
z/OS

XL C/C++
Compiler and Runtime Migration Guide for
the Application Programmer
Version 2 Release 2

GC14-7306-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 149.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document ix
z/OS XL C/C++ on the World Wide Web xvi

Where to find more information xvi
Technical support xvi
How to send your comments to IBM xvii

If you have a technical problem xvii

Part 1. Introduction 1

Chapter 1. New migration issues for
z/OS V2R2 XL C/C++ 3

Chapter 2. New migration issues for
z/OS XL C/C+ V2R1M1 5

Chapter 3. Program migration checklists 7
Before you start your migration 7
When you are compiling code 8
When you are binding program objects or load
modules 9
When you are running an application 10
Tools that facilitate your migration. 11

The Edge Portfolio Analyzer 11
Applicability of product information 12

Version history of IBM C/C++ compilers and
libraries 13

Part 2. Migration of pre-OS/390
C/C++ applications to z/OS V2R2
XL C/C++ 15

Chapter 4. Source code compatibility
issues with pre-OS/390 C/C++
programs 17
Removal of IBM Open Class Library support . . . 17
Source code modifications necessitated by changes
in runtime library 17

The #pragma runopts directive 17
Resource allocation and memory management
issues 17

The sizeof operator applied to a function return
type 18
A user-defined global new operator and array
new 18

Addressing incompatibilities. 18
C/370 V2 main program and main entry point 19
Pointer incompatibilities 19

Data type incompatibilities 19
Assignment restrictions for packed structures and
unions 19
DSECT header files and packed structures . . . 19

Changes required by programs with interlanguage
calls 20

Explicit program mask manipulations 20
Assembler source code changes in System
Programming C (SPC) applications built with
EDCXSTRX 20

Internationalization incompatibilities 21
Support of alternate code points 21

Chapter 5. Compile-time issues with
pre-OS/390 C/C++ programs 23
Changes in compiler listings, messages, and return
codes 23

Macro redefinitions might result in severe errors 23
Changes in compiler options 23

Compiler options that are no longer supported 23
Compiler options that were introduced in
OS/390 C/C++ or later 24
Changes in compiler option functionality . . . 24

Changes that affect compiler invocations 27
IPA compiler option and very large applications 27
Customized JCL and the CXX format 27
CBCI and CBCXI procedures in JCL 28

Changes that affect SYSLIB DD cards 28
Change in SCLBH logical record length 28

Chapter 6. Bind-time migration issues
with pre-OS/390 C/C++ programs . . . 29
Library release level in use 29
Binder invocation changes 31

Impact of changes to CC EXEC invocation syntax 31
Changes due to customizations of the runtime
environment 31

User-developed exit routines 31
Incompatibilities in external references 32
Requirements for relinking C/370 modules that
invoke Debug Tool 32
C/370 modules with interlanguage calls (ILC) . . . 32

Interlanguage calls between assembler and PL/I
language modules 33
Function calls between C and Fortran modules 33
Function calls to and from COBOL modules . . 33

Chapter 7. Runtime migration issues
with pre-OS/390 C/C++ applications . . 39
Retention of pre-OS/390 runtime behavior 39
Runtime library messages 39

Return codes and messages 39
Error conditions that cause runtime messages . . 40
Prefixes of perror() and strerror() messages . . . 40
Language specification for messages 40
User-developed exit routines 40

Changes that affect customized JCL procedures . . 41
Changes in data set names 41

© Copyright IBM Corp. 2015 iii

Arguments that contain a slash 41
Differences in standard streams. 41
Dump generation 41

Changes in runtime option specification 41
Runtime options lists 41
Obsolete runtime options 41
Return codes for abnormal enclave terminations 42
Abnormal terminations and the TRAP runtime
option 42
Default heap allocations 42
HEAP parameter specification 42
Default stack allocations 43
STACK parameter specification 43
XPLINK downward-growing stack and the
THREADSTACK runtime option 43

Runtime library compatibility issues with
pre-OS/390 applications 43

Changes to the putenv() function and POSIX
compliance 43
UCMAPS and UCS-2 and UTF-8 converters . . 44
Common library initialization compatibility
issues with C/370 modules 44
Internationalization issues in POSIX and
non-POSIX applications 45

Hardware and OS exceptions 46
Decimal overflow exceptions 46
SIGTERM, SIGINT, SIGUSR1, and SIGUSR2
exceptions 46
Unexpected SIGFPE exceptions 46

Resource allocation and memory management
migration issues 47

The realloc() function 47

Chapter 8. Input and output operations
compatibility 49
Migration issues when opening pre-OS/390 files . . 49
Migration issues when writing to pre-OS/390 files 49
Changes in DBCS string behavior 51
Changes in stdout and stderr file positioning . . . 51
Behavior changes when closing and reopening ASA
files 53
Changes in values returned by the fldata() function 53
VSAM I/O changes 54

Change in allocation of VSAM control blocks and
I/O buffers 54

Terminal I/O changes 54

Part 3. Migration of OS/390 C/C++
applications to z/OS V2R2 XL C/C++ 55

Chapter 9. Source code compatibility
issues with OS/390 programs 57
Overflow processing and code modifications . . . 57
References to class libraries that are no longer
shipped 57

Chapter 10. Compile-time migration
issues with OS/390 programs 59
Changes in compiler listings and messages 59

Debug format specification 59
Language specification for compiler messages . . 59
Optimization level mapping and listing content 60
Macro redefinitions and error messages 60

Changes in compiler options 60
Compiler options that are no longer supported 60
ARCHITECTURE compiler option 61
ARGPARSE compiler option with Metal 61
ASCII compiler option. 61
CHECKOUT(CAST) compiler option 62
DIGRAPH compiler option 62
ENUMSIZE compiler option 62
INFO compiler option 62
INLINE compiler option 62
IPA(LINK) compiler option 63
LANGLVL(ANSI), LANGLVL(SAA), or
LANGLVL(SAAL2) compiler option and macro
redefinitions 64
LANGLVL(EXTENDED) compiler option and
macro redefinitions 64
LANGLVL(LONGLONG) compiler option . . . 65
LOCALE compiler option 65
M compiler option 65
OPTIMIZE compiler option 66
NORENT compiler option 66
ROSTRING compiler option 66
ROCONST compiler option 67
STATICINLINE compiler option 67
SQL compiler option and SQL EXEC statements 67
TARGET compiler option 67
TEST compiler option 67
TUNE compiler option 67

Changes in IBM data set names 67
Introduction of 1998 Standard C++ support. . . . 68
Changes that affect performance and optimization 68

Addition of the #pragma reachable and #pragma
leaves directives 68

Changes that affect customized JCL procedures . . 68
Potential increase in memory requirements . . . 68
JCL CBCI and CBCXI procedures and the
variable CLBPRFX 68
Syntax to invoke the CC command 68

Removal of Model Tool support 69

Chapter 11. Bind-time migration issues
with OS/390 C/C++ programs 71
Reentrant variables when the compiler option is
NORENT 71

Chapter 12. Runtime migration issues
with OS/390 C/C++ applications 73
Retention of OS/390 runtime behavior 73

Changes to the putenv() function and POSIX
compliance 73

Debug format and translation of the c89 -g flag
option 74
Language Environment customization issues . . . 74
Change in allocation of VSAM control blocks . . . 74

iv z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

||

||

Chapter 13. Migration issues resulting
from class library changes between
OS/390 C/C++ applications and
Standard C++ library. 75
Function calls to different libraries. 75
Removal of IBM Open Class Library support . . . 75
Removal of SOM support. 75
Removal of Database Access Class Library utility . . 75
Migration of programs with calls to UNIX System
Laboratories I/O Stream Library functions 75

Part 4. Migration of earlier z/OS
C/C++ applications to z/OS V2R2
XL C/C++ 77

Chapter 14. Source code compatibility
issues with earlier z/OS C/C++
programs 79
Function calls to different libraries. 79
References to class libraries that are no longer
shipped 79
Migration from UNIX System Laboratories I/O
Stream Library to Standard C++ I/O Stream Library 80
Standard C++ compliance compatibility issues. . . 80
Use of XL C/C++ library functions 80

Timing of processor release by the
pthread_yield() function 80
New information returned by the getnameinfo()
function 81
Feature test macros and system header files . . 81
Potential need to include _Ieee754.h 81
New definitions exposed by use of the
_OPEN_SYS_SOCK_IPV6 macro 82
Required changes to fprintf and fscanf strings
%D, %DD, and %H. 82
Changes to the putenv() function and POSIX
compliance 82
Required changes to fprintf and fscanf strings
due to new specifiers for vector types 83

C99 support of long long data type 83
Use of pragmas 84

Application of #pragma unroll() as of z/OS V1R7
XL C/C++. 84
Unexpected C++ output with #pragma pack(2) 84

Virtual function declaration and use 84

Chapter 15. Compile-time migration
issues with earlier z/OS C/C++
programs 87
Changes in compiler listings, messages, and return
codes 87

Appearance of compiler substitution variables . . 88
Corrections in escape sequence encoding . . . 88
Function offsets in source listing 88
Diagnostic refinement in identification of linkage
issues (C++ only) 88
References to UNIX System Services file names 89
Non-compliant array index raises an exception 89

Unexpected name lookup error messages with
template use 90
Width of mnemonic in assembly listings. . . . 90
Macro redefinitions and error messages 90

Changes in compiler option functionality 91
Option behavior change when processing
multiple suboptions 91
CHECKOUT compiler option 91
CMDOPTS compiler option and conflict
resolution 91
DFP compiler option and earlier floating-point
applications 91
DSAUSER compiler option 92
ENUMSIZE(SMALL) and protected enumeration
types in system header files 92
FLAG compiler option. 93
FLOAT(AFP) suboptions for applications that
access CICS data 93
GENASM compiler option 93
GONUMBER compiler option and LP64 support 93
IPA compiler option 93
LANGLVL(ANSI), LANGLVL(SAA), or
LANGLVL(SAAL2) compiler option and macro
redefinitions 93
LANGLVL(EXTC1X) compiler option 93
LANGLVL(EXTENDED) compiler option and
macro redefinitions 94
LANGLVL(EXTENDED0X) compiler option . . 94
LOCALE compiler option 94
M compiler option 95
RESTRICT option 95
SEVERITY option 95
SQL compiler option and SQL EXEC statements 95
TARGET compiler option 95
TEMPLATEDEPTH compiler option 96

Changes that affect compiler invocations 96
Changes that affect use of the c89 command . . 97
Changes that affect use of the xlc utility 97

Changes that affect JCL procedures 98
User-defined conversion tables and iconv()
functions 98
ILP32 compiler option and name mangling . . . 99
IPA(LINK) compiler option and very large
applications 99
IPA(LINK) compiler option and exploitation of
64-bit virtual memory 99

JCL that runs pre-z/OS V1R5 C/C++ programs 100
Compiler options that manage Standard C++
compliance 100
Impact of recompiling applications that include
<net/if.h> with the
_XOPEN_SOURCE_EXTENDED feature test macro . 100
Impact of recompiling applications that include the
pselect() interface 100
Impact of recompiling with the
_OPEN_SYS_SOCK_IPV6 macro 100
Impact of recompiling code that relies on math.h to
include IEEE 754 interfaces 100

Contents v

|
||

Chapter 16. Bind-time migration
issues with earlier z/OS C/C++
programs 101
Unexpected "missing symbol" error (C++ only) . . 101
Program modules from an earlier release 101

Namespace pollution binder errors 101
c89 COMPAT binder option default and
programs from an earlier release 102

Alignment incompatibilities between object models 102
Alignment incompatibilities between XL C and
XL C++ output with #pragma pack(2) 102

Debug format and c89 -g flag option translation 103
argc argv parsing support for Metal C programs 103

Chapter 17. Runtime migration issues
with earlier z/OS C/C++ applications . 105
Earlier AMODE 64 applications 105

HEAPPOOLS runtime option no longer ignored
in all AMODE 64 applications 105

Customized runtime libraries 105
Failure of authentication process 106
Retention of previous runtime behavior 106

Unexpected output from fprintf() or fscanf() . . 106
IEEE754 math functions 107
Internal timing algorithm specification 107
Daylight saving time definition 107
Changes to the putenv() function and POSIX
compliance 108

Internationalization issues 108
Default daylight saving time change. 108
EEC default currency update 109
Movement of LOCALDEF utilities to new data
sets. 109

Changes in math library functions 109
Changes in floating-point support 111

Hexadecimal floating-point notation 111
Floating-point special values 112

Changes in allocation of VSAM control blocks . . 112
Changes to st_mode attribute of AF_UNIX socket
files 112
Changes to strfmon() output 113
Changes to structure t_opthdr in xti.h 113
Changes to getting group or user database entry 113
Removal of conversion table source code 113

Part 5. ISO Standard C++
compliance migration issues . . . 115

Chapter 18. Language level and your
Standard C++ compliance objectives . 117

Chapter 19. Changes that affect
Standard C++ compliance of language
features 119
Unqualified name lookups and the using directive 119
Order of destruction for statically initialized objects 120
Implicit integer type declarations 120
Scope of for-loop initializer declarations 120

Visibility of friend declarations 121
Migration of friend declarations in class member
lists 121
cv-qualifications when the thrown and caught
types are the same. 122
Compiler options that are introduced in C++11
standard 122

LANGLVL(AUTOTYPEDEDUCTION) compiler
option (C++11) 123
LANGLVL(C1XNORETURN) compiler option
(C++11) 123
LANGLVL(C99LONGLONG) compiler option
(C++11) 123
LANGLVL(C99PREPROCESSOR) compiler
option (C++11) 123
LANGLVL(CONSTEXPR) compiler option
(C++11) 124
LANGLVL(DECLTYPE) compiler option (C++11) 124
LANGLVL(DEFAULTANDDELETE) compiler
option (C++11) 124
LANGLVL(DELEGATINGCTORS) compiler
option (C++11) 124
LANGLVL(EXPLICITCONVERSIONOPERATORS)
compiler option (C++11). 124
LANGLVL(EXTENDEDFRIEND) compiler
option (C++11) 124
LANGLVL(EXTENDEDINTEGERSAFE)
compiler option (C++11). 125
LANGLVL(EXTERNTEMPLATE) compiler
option (C++11) 125
LANGLVL(INLINENAMESPACE) compiler
option (C++11) 125
LANGLVL(REFERENCECOLLAPSING)
compiler option (C++11). 125
LANGLVL(RIGHTANGLEBRACKET) compiler
option (C++11) 125
LANGLVL(RVALUEREFERENCES) compiler
option (C++11) 126
LANGLVL(SCOPEDENUM) compiler option
(C++11) 126
LANGLVL(STATIC_ASSERT) compiler option
(C++11) 126
LANGLVL(VARIADICTEMPLATES) compiler
option (C++11) 126
WARN0X compiler option (C++11) 126

Errors due to changes in compiler behavior . . . 126
C++ class access errors 126
Exceptions caused by ambiguous overloads . . 127
Exceptions caused by user-defined conversions 128
Issues caused by the use of incomplete types in
exception-specifications 128
Syntax errors with array new 129

Part 6. Migration issues for C/C++
applications that use other IBM
products 131

vi z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 20. Migration issues with
earlier C/C++ applications that run
CICS statements 133
Migration of CICS statements from pre-OS/390
C/C++ applications 133

CICS statement translation options 133
HEAP option used with the interface to CICS 133
User-developed exit routines 133
Multiple libraries under CICS 133
CICS abend codes and messages 134
CICS reason codes. 134
Standard stream support under CICS 134
Changes in stderr output under CICS 135
Transient data queue names under CICS . . . 135

Migration of CICS statements from earlier XL
C/C++ applications 135

CICS TS V4.1 with "Extended MVS Linkage
Convention" 136
Customized CEECCSD.COPY and
CEECCSDX.COPY files and iconv() changes . . 136

Chapter 21. Migration issues with
earlier C/C++ applications that use
DB2 139
Namespace violations and SQL coprocessor-based
compilations. 139

Example: Performing a macro definition check 140
Example: Explicitly undefining and redefining a
macro 140

Potential need to specify DBRMLIB with the SQL
option 141

Part 7. Appendixes 143

Appendix. Accessibility 145
Accessibility features 145
Consult assistive technologies 145
Keyboard navigation of the user interface 145
Dotted decimal syntax diagrams 145

Notices 149
Policy for unsupported hardware. 150
Minimum supported hardware 151
Programming interface information 151
Standards 151
Trademarks 152

Bibliography. 153

Index 155

Contents vii

viii z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

About this document

This document discusses the implications of migrating applications from each of
the supported compilers and libraries to the IBM® z/OS® V2R2 XL C/C++ release.
To find the section of the document that applies to your migration, see “How to
use this document.”

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line (|)
to the left of the change.

You may notice changes in the style and structure of some of the contents in this
document; for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

How to use this document

You can use this document to:
v Help determine whether and how you can continue to use existing source code,

object code, and load modules
v Become aware of the changes in compiler and runtime behavior that may affect

your migration from earlier versions of the compiler

Note: In most situations, existing well-written applications can continue to work
without modification.

This document does not:

v Discuss all of the enhancements that have been made to the z/OS XL C/C++
compiler and IBM Language Environment® element provided with z/OS.

Notes:

1. All subsequent "Language Environment" references in this document apply
to the Language Environment element that is provided with the z/OS
operating system unless otherwise specified as applying to an earlier
operating system.

2. For a list of books that provide information about the z/OS XL C/C++
compiler and Language Environment element, refer to “z/OS XL C/C++ and
related documents” on page xi.

v Show how to change an existing C program so that it can use C++.

Note: For a description of some of the differences between C and C++, see z/OS
XL C/C++ Language Reference.

How this document is organized

This document includes the following topics:
v Part 1 provides information that you will need to understand before you migrate

programs or applications, as well as assistance in finding the information that is

© Copyright IBM Corp. 2015 ix

relevant to your migration. See Chapter 1, “New migration issues for z/OS V2R2
XL C/C++,” on page 3 and Chapter 3, “Program migration checklists,” on page
7.

v Part 2 describes the considerations for migrating from a pre-OS/390 C and C++
application. See Part 2, “Migration of pre-OS/390 C/C++ applications to z/OS
V2R2 XL C/C++,” on page 15.

v Part 3 describes the considerations for migrating from an IBM OS/390® C and
C++ application. See Part 3, “Migration of OS/390 C/C++ applications to z/OS
V2R2 XL C/C++,” on page 55.

v Part 4 describes the considerations for migrating from an earlier z/OS C/C++
application. See Part 4, “Migration of earlier z/OS C/C++ applications to z/OS
V2R2 XL C/C++,” on page 77.

v Part 5 describes the migration issues related to Programming languages - C++
(ISO/IEC 14882:2003(E)), which documents the C++ Standard. See Part 5, “ISO
Standard C++ compliance migration issues,” on page 115.

v Part 6 describes the issues related to migration of C/C++ programs that access
IBM CICS® or IBM DB2® information. See Part 6, “Migration issues for C/C++
applications that use other IBM products,” on page 131.

Within Parts 2, 3, and 4, chapters are organized around the following areas:
v Possible changes to source code that are required by the migration.
v Migration issues that affect compilations.
v Migration issues that affect the linking or binding process.
v Migration issues that affect application execution.
v Migration issues that are caused by class library changes.

In this release of the document, you will notice that some topics are covered in
different locations. Use the index to see all discussions related to a specific topic,
such as POSIX compliance or globalization. The index is structured to support
quick and selective retrieval of specific topics.

Typographical conventions

The following table explains the typographical conventions used in this document.

Table 1. Typographical conventions

Typeface Indicates Example

bold Commands, executable names,
compiler options and pragma
directives that contain lower-case
letters.

The xlc utility provides two basic
compiler invocation commands, xlc and
xlC (xlc++), along with several other
compiler invocation commands to
support various C/C++ language levels
and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than the
size requested.

monospace Programming keywords and
library functions, compiler built-in
functions, file and directory names,
examples of program code,
command strings, or user-defined
names.

If one or two cases of a switch
statement are typically executed much
more frequently than other cases, break
out those cases by handling them
separately before the switch statement.

x z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

z/OS XL C/C++ and related documents

This topic summarizes the content of the z/OS XL C/C++ documents and shows
where to find related information in other documents.

Table 2. z/OS XL C/C++ and related documents

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Programming Guide,
SC14-7315

Guidance information for:

v XL C/C++ input and output

v Debugging z/OS XL C programs that use input/output

v Using linkage specifications in C++

v Combining C and assembler

v Creating and using DLLs

v Using threads in z/OS UNIX System Services applications

v Reentrancy

v Handling exceptions, error conditions, and signals

v Performance optimization

v Network communications under z/OS UNIX

v Interprocess communications using z/OS UNIX

v Structuring a program that uses C++ templates

v Using environment variables

v Using System Programming C facilities

v Library functions for the System Programming C facilities

v Using runtime user exits

v Using the z/OS XL C multitasking facility

v Using other IBM products with z/OS XL C/C++ (IBM CICS Transaction
Server for z/OS, CSP, DWS, IBM DB2, IBM GDDM, IBM IMS™, ISPF, IBM
QMF™)

v Globalization: locales and character sets, code set conversion utilities,
mapping variant characters

v POSIX character set

v Code point mappings

v Locales supplied with z/OS XL C/C++

v Charmap files supplied with z/OS XL C/C++

v Examples of charmap and locale definition source files

v Converting code from coded character set IBM-1047

v Using built-in functions

v Using vector programming support

v Using runtime check library

v Using high performance libraries

v Programming considerations for z/OS UNIX C/C++

About this document xi

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ User's Guide,
SC14-7307

Guidance information for:

v z/OS XL C/C++ examples

v Compiler options

v Binder options and control statements

v Specifying Language Environment runtime options

v Compiling, IPA Linking, binding, and running z/OS XL C/C++ programs

v Utilities (Object Library, CXXFILT, DSECT Conversion, Code Set and
Locale, ar and make, BPXBATCH, c89, xlc)

v Diagnosing problems

v Cataloged procedures and IBM REXX EXECs

v Customizing default options for the z/OS XL C/C++ compiler

z/OS XL C/C++ Language Reference,
SC14-7308

Reference information for:

v The C and C++ languages

v Lexical elements of z/OS XL C and C++

v Declarations, expressions, and operators

v Implicit type conversions

v Functions and statements

v Preprocessor directives

v C++ classes, class members, and friends

v C++ overloading, special member functions, and inheritance

v C++ templates and exception handling

v z/OS XL C and C++ compatibility

z/OS XL C/C++ Messages, GC14-7305 Provides error messages and return codes for the compiler, and its related
application interface libraries and utilities. For the XL C/C++ runtime library
messages, refer to z/OS Language Environment Runtime Messages, SA38-0686.
For the c89 and xlc utility messages, refer to z/OS UNIX System Services
Messages and Codes, SA23-2284.

z/OS XL C/C++ Runtime Library
Reference, SC14-7314

Reference information for:

v header files

v library functions

z/OS C Curses, SA38-0690 Reference information for:

v Curses concepts

v Key data types

v General rules for characters, renditions, and window properties

v General rules of operations and operating modes

v Use of macros

v Restrictions on block-mode terminals

v Curses functional interface

v Contents of headers

v The terminfo database

xii z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Compiler and Runtime
Migration Guide for the Application
Programmer, GC14-7306

Guidance and reference information for:

v Common migration questions

v Application executable program compatibility

v Source program compatibility

v Input and output operations compatibility

v Class library migration considerations

v Changes between releases of z/OS

v Pre-z/OS C and C++ compilers to current compiler migration

v Other migration considerations

z/OS Metal C Programming Guide and
Reference, SC14-7313

Guidance and reference information for:

v Metal C run time

v Metal C programming

v AR mode

Standard C++ Library Reference,
SC14-7309

The documentation describes how to use the following three main
components of the Standard C++ Library to write portable C/C++ code that
complies with the ISO standards:

v ISO Standard C Library

v ISO Standard C++ Library

v Standard Template Library (C++)

The ISO Standard C++ library consists of 51 required headers. These 51 C++
library headers (along with the additional 18 Standard C headers) constitute
a hosted implementation of the C++ library. Of these 51 headers, 13
constitute the Standard Template Library, or STL.

z/OS Common Debug Architecture User's
Guide, SC14-7310

This documentation is the user's guide for IBM's libddpi library. It includes:

v Overview of the architecture

v Information on the order and purpose of API calls for model user
applications and for accessing DWARF information

v Information on using the Common Debug Architecture with C/C++ source

This user's guide is part of the Runtime Library Extensions documentation.

z/OS Common Debug Architecture
Library Reference, SC14-7311

This documentation is the reference for IBM's libddpi library. It includes:

v General discussion of Common Debug Architecture

v Description of APIs and data types related to stacks, processes, operating
systems, machine state, storage, and formatting

This reference is part of the Runtime Library Extensions documentation.

DWARF/ELF Extensions Library
Reference, SC14-7312

This documentation is the reference for IBM's extensions to the libdwarf and
libelf libraries. It includes information on:

v Consumer APIs

v Producer APIs

This reference is part of the Runtime Library Extensions documentation.

Debug Tool documentation, available
on the Debug Tool for z/OS library
page on the World Wide Web

The documentation, which is available at http://www.ibm.com/software/
awdtools/debugtool/library/, provides guidance and reference information
for debugging programs, using Debug Tool in different environments, and
language-specific information.

About this document xiii

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/software/awdtools/debugtool/library/

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

README file The README file provides additional information for using the z/OS XL
C/C++ licensed program, including late changes to z/OS XL C/C++
publications. To access any README files that were published after the ship
date, go to http://www.ibm.com/support/docview.wss?uid=swg27007531.

Note: For complete and detailed information on linking and running with Language Environment services and using
the Language Environment runtime options, refer to z/OS Language Environment Programming Guide, SA38-0682. For
complete and detailed information on using interlanguage calls, refer to z/OS V2R1.0 Language Environment Writing
Interlanguage Communication Applications, SA38-0684.

The following table lists the z/OS XL C/C++ and related documents. The table
groups the documents according to the tasks they describe.

Table 3. Documents by task

Tasks Documents

Planning, preparing, and migrating to z/OS
XL C/C++

v z/OS XL C/C++ Compiler and Runtime Migration Guide for the
Application Programmer, GC14-7306

v z/OS Language Environment Customization, SA38-0685

v z/OS V2R1.0 Language Environment Runtime Application Migration
Guide, GA32-0912

v z/OS UNIX System Services Planning, GA32-0884

v z/OS Planning for Installation, GA32-0890

Installing v z/OS Program Directory

v z/OS Planning for Installation, GA32-0890

v z/OS Language Environment Customization, SA38-0685

Option customization v z/OS XL C/C++ User's Guide, SC14-7307

Coding programs v z/OS XL C/C++ Runtime Library Reference, SC14-7314

v z/OS XL C/C++ Language Reference, SC14-7308

v z/OS XL C/C++ Programming Guide, SC14-7315

v z/OS Metal C Programming Guide and Reference, SC14-7313

v z/OS V2R1.0 Language Environment Concepts Guide, SA38-0687

v z/OS Language Environment Programming Guide, SA38-0682

v z/OS Language Environment Programming Reference, SA38-0683

Coding and binding programs with
interlanguage calls

v z/OS XL C/C++ Programming Guide, SC14-7315

v z/OS XL C/C++ Language Reference, SC14-7308

v z/OS Language Environment Programming Guide, SA38-0682

v z/OS V2R1.0 Language Environment Writing Interlanguage
Communication Applications, SA38-0684

v z/OS MVS Program Management: User's Guide and Reference,
SA23-1393

v z/OS MVS Program Management: Advanced Facilities, SA23-1392

Compiling, binding, and running programs v z/OS XL C/C++ User's Guide, SC14-7307

v z/OS Language Environment Programming Guide, SA38-0682

v z/OS Language Environment Debugging Guide, GA32-0908

v z/OS MVS Program Management: User's Guide and Reference,
SA23-1393

v z/OS MVS Program Management: Advanced Facilities, SA23-1392

xiv z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/support/docview.wss?uid=swg27007531

Table 3. Documents by task (continued)

Tasks Documents

Compiling and binding applications in the
z/OS UNIX (z/OS UNIX) environment

v z/OS XL C/C++ User's Guide, SC14-7307

v z/OS V2R2.0 UNIX System Services User's Guide, SA23-2279

v z/OS UNIX System Services Command Reference, SA23-2280

v z/OS MVS Program Management: User's Guide and Reference,
SA23-1393

v z/OS MVS Program Management: Advanced Facilities, SA23-1392

Debugging programs v README file

v z/OS XL C/C++ User's Guide, SC14-7307

v z/OS XL C/C++ Messages, GC14-7305

v z/OS XL C/C++ Programming Guide, SC14-7315

v z/OS Language Environment Programming Guide, SA38-0682

v z/OS Language Environment Debugging Guide, GA32-0908

v z/OS Language Environment Runtime Messages, SA38-0686

v z/OS UNIX System Services Messages and Codes, SA23-2284

v z/OS V2R2.0 UNIX System Services User's Guide, SA23-2279

v z/OS UNIX System Services Command Reference, SA23-2280

v z/OS UNIX System Services Programming Tools, SA23-2282

v Debug Tool documentation, available on the Debug Tool Library
page on the World Wide Web (http://www.ibm.com/software/
awdtools/debugtool/library/)

Developing debuggers and profilers v z/OS Common Debug Architecture User's Guide, SC14-7310

v z/OS Common Debug Architecture Library Reference, SC14-7311

v DWARF/ELF Extensions Library Reference, SC14-7312

Packaging XL C/C++ applications v z/OS XL C/C++ Programming Guide, SC14-7315

v z/OS XL C/C++ User's Guide, SC14-7307

Using shells and utilities in the z/OS UNIX
environment

v z/OS XL C/C++ User's Guide, SC14-7307

v z/OS UNIX System Services Command Reference, SA23-2280

v z/OS UNIX System Services Messages and Codes, SA23-2284

Using sockets library functions in the z/OS
UNIX environment

v z/OS XL C/C++ Runtime Library Reference, SC14-7314

Using the ISO Standard C++ Library to write
portable C/C++ code that complies with ISO
standards

v Standard C++ Library Reference, SC14-7309

Performing diagnosis and submitting an
Authorized Program Analysis Report (APAR)

v z/OS XL C/C++ User's Guide, SC14-7307

Note: For information on using the prelinker, see the appendix on prelinking and linking z/OS XL C/C++ programs
in z/OS XL C/C++ User's Guide.

Softcopy documents

The z/OS XL C/C++ publications are supplied in PDF format and available for
download at http://www.ibm.com/software/awdtools/czos/library/.

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader,
you can download it (subject to Adobe license terms) from the Adobe website at
http://www.adobe.com.

About this document xv

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/software/awdtools/czos/library/
http://www.adobe.com

You can also browse the documents on the World Wide Web by visiting the z/OS
library at http://www.ibm.com/systems/z/os/zos/bkserv/.

Note: For further information on viewing and printing softcopy documents and
using IBM BookManager®, see z/OS V2R2 Information Roadmap.

z/OS XL C/C++ on the World Wide Web
Additional information on z/OS XL C/C++ is available on the World Wide Web on
the z/OS XL C/C++ home page at http://www.ibm.com/software/awdtools/
czos/.

This page contains late-breaking information about the z/OS XL C/C++ product,
including the compiler, the C/C++ libraries, and utilities. There are links to other
useful information, such as the z/OS XL C/C++ information library and the
libraries of other z/OS elements that are available on the web. The z/OS XL
C/C++ home page also contains links to other related websites.

Where to find more information
For an overview of the information associated with z/OS, see z/OS V2R2
Information Roadmap.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters
and documentation APARs for z/OS, see the online document z/OS APAR book
(http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ ZDOCAPAR).

This document is updated weekly and lists documentation changes before they are
incorporated into z/OS publications.

The z/OS Basic Skills Information Center
The z/OS Basic Skills Information Center is a Web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS.

To access the z/OS Basic Skills Information Center, open your Web browser to the
following Web site, which is available to all users (no login required): z/OS Basic
Skills in IBM Knowledge Center (http://www.ibm.com/support/
knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html)

Technical support
Additional technical support is available from the z/OS XL C/C++ Support page.
This page provides a portal with search capabilities to a large selection of technical
support FAQs and other support documents. You can find the z/OS XL C/C++
Support page on the Web at:

xvi z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/software/awdtools/czos/
http://www.ibm.com/software/awdtools/czos/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html

http://www.ibm.com/software/awdtools/czos/support

If you cannot find what you need, you can e-mail:

compinfo@ca.ibm.com

For the latest information about z/OS XL C/C++, visit the product information site
at:

http://www.ibm.com/software/awdtools/czos/

For information about boosting performance, productivity and portability, visit the
C/C++ Cafe Community & Forum.

How to send your comments to IBM
We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the
Application Programmer
GC14-7306-02

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS Support Portal (http://www-947.ibm.com/

systems/support/z/zos/).

About this document xvii

http://www.ibm.com/software/awdtools/czos/support
http://www.ibm.com/software/awdtools/czos/
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/

xviii z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 1. Introduction

Before you start migrating applications to z/OS V2R2 XL C/C++, familiarize
yourself with the following information:
v Chapter 1, “New migration issues for z/OS V2R2 XL C/C++,” on page 3
v Chapter 3, “Program migration checklists,” on page 7

© Copyright IBM Corp. 2015 1

2 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 1. New migration issues for z/OS V2R2 XL C/C++

IBM z/OS V2R2 XL C/C++ compiler has made performance and usability
enhancements for the IBM z/OS operating platform V2R2 release ("z/OS V2R2"
hereafter). For detailed information about these changes, see z/OS XL C/C++ User's
Guide, SC14-7307.

For information about the changes that the IBM Language Environment element
has made for z/OS V2R2, see "What's New in Language Environment for z/OS" in
z/OS V2R1.0 Language Environment Concepts Guide.

This document alerts you to the migration issues that result from the following
enhancements:

New compiler options

z/OS V2R2 XL C/C++ compiler introduces support for the following new
compiler options:
v CHECKNEW - Specify this option to control whether a null pointer

check is performed on the pointer that is returned by an invocation of
the throwing versions of operator new and operator new[].

For detailed information about these new compiler options, see z/OS XL
C/C++ User's Guide, SC14-7307.

New compiler suboptions

z/OS V2R2 XL C/C++ compiler introduces support for the following new
compiler suboptions:
v DSAUSER(value) - Specify value to allocate a user field with the size of

value 32-bit words.
v LANGLVL(NULLPTR) - Specify this suboption to enable the nullptr

feature.
v TARGET(zOSV2R2) - Specify this suboption to instruct the compiler to

generate object code to run under z/OS Version 2 Release 2 and
subsequent releases.

v VECTOR(TYPE | AUTOSIMD) - Specify the TYPE suboption to support
the vector data types and specify the AUTOSIMD suboption to generate
code, when possible, using the SIMD instructions enabled under the
Vector facility for z/Architecture®.

For detailed information about these suboptions, see z/OS XL C/C++ User's
Guide, SC14-7307.

Changes to default ARCH and TUNE level
Starting with z/OS V2R2, the default ARCH level is changed from
ARCH(7) to ARCH(8), and the default TUNE level is changed from
TUNE(7) to TUNE(8). For detailed information, see ARCHITECTURE and
TUNE in z/OS XL C/C++ User's Guide, SC14-7307.

Canges to fprintf and fscanf strings due to new specifiers for vector types
As of z/OS V2R1 (with APAR PI20843), XL C/C++ runtime supports new
specifiers for the fprintf and fscanf families of functions for vector data
types. For detailed information, see “Required changes to fprintf and fscanf
strings due to new specifiers for vector types” on page 83.

© Copyright IBM Corp. 2015 3

Migration tools
You can use migration tools to facilitate migration activities. For detailed
information, see “Tools that facilitate your migration” on page 11.

4 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 2. New migration issues for z/OS XL C/C+ V2R1M1

The IBM z/OS XL C/C++ compiler updates for z/OS V2R1 are available as a web
download from http://www-03.ibm.com/systems/z/os/zos/downloads/ (see "XL
C/C++ V2R1M1 web deliverable for z/OS 2.1"). These updates are referred to as
z/OS XL C/C++ V2R1M1 in this document. Performance and usability
enhancements are made for the z/OS V2R1 XL C/C++ compiler. For detailed
information about these changes, see z/OS XL C/C++ User's Guide, SC14-7307.

This document alerts you to the migration issues that result from the following
enhancements:

New compiler options

Use the following new compiler options that are introduced with z/OS XL
C/C++ V2R1M1 :
v ASM - Specify the ASM compiler option to support embedded assembler

source inside the C and C++ programs.
v ASMLIB - Use the ASMLIB compiler option to specify assembler macro

libraries to be used.
v FUNCEVENT - Specify the FUNCEVENT compiler option to enable LE

CEL4CASR, CELHCASR, and __CEL4CASR CWI (compler-writer
interface) notifications for each specified function upon function entry.

v -MG, -MT, and -MQ - Specify the -MG, -MT, and -MQ compiler options
to generate dependency files that can be used by the make utility.

v VECTOR - Specify the VECTOR compiler option to enable the vector
processing support.

For detailed information about these new compiler options, see z/OS XL
C/C++ User's Guide, SC14-7307.

New compiler suboptions

Use the following compiler suboptions that are introduced with z/OS XL
C/C++ V2R1M1:
v ARCH(11) - Specify this suboption to instruct the compiler to produce

code that uses instructions available on the 2964-xxx (IBM z Systems z13
(z13)) models in z/Architecture mode.

v KEYWORD(asm) - Specify this suboption to add asm to the list of
keywords for C and C++ languages.

v LANGLVL(REDEFMAC) - Specify this suboption to redefine a macro
without a prior #undef or undefine() statement.

v MAKEDEP(GCC) - Specify this suboption to instruct the compiler to
produce make dependencies file format with a single make rule for all
dependencies.

v MAKEDEP(PPONLY) - Specify this suboption to instructs the compiler
to produce only the make dependencies file without generating an object
file, with the same make file format as the format produced with the gcc
suboption.

v NAMEMANGLING(zOSV2R1M1_ANSI) - Use this suboption to specify
the name mangling scheme that is compatible with z/OS XL C++
V2R1M1 link modules.

© Copyright IBM Corp. 2015 5

v TUNE(11) - Specify this suboption to instruct the compiler to generate
code that is optimized for the 2964-xxx (IBM z Systems z13 (z13))
models.

For detailed information about these suboptions, see z/OS XL C/C++ User's
Guide, SC14-7307.

Hardware model and feature built-ins
Use the hardware model and feature built-ins in your source programs to
query the model of the underlying hardware and the features unique to
the identified model. For detailed information, see Hardware model and
feature built-ins in z/OS XL C/C++ Programming Guide, SC14-7315.

Support for inline assembly statement

Inline assembly statement in source code is supported in C and C++
programs. The ASM option causes the __asm and __asm__ statements to
follow the asm statement rules. The ASMLIB option specifies the assembler
macro libraries to be used when assembling the inlined statements in
source code. For more information, see ASM | NOASM and ASMLIB |
NOASMLIB in z/OS XL C/C++ User's Guide, SC14-7307.

When the ASM option is specified, the __IBM_ASM_SUPPORT macro is
predefined to 1. The __IBM_INLINE_ASM_SUPPORT macro has been
removed.

Support for vector processing
Explore the vector programming support to make use of the Vector Facility
for z/Architecture. For detailed information, see Using vector
programming support in z/OS XL C/C++ Programming Guide, SC14-7315.

Support for MASS and ATLAS libraries
Use the Mathematical Acceleration Subsystem (MASS) and Automatically
Tuned Linear Algebra Software (ATLAS) libraries for high-performance
mathematical computing. For detailed information, see Using high
performance libraries in z/OS XL C/C++ Programming Guide, SC14-7315.

Migration tools
You can use migration tools to facilitate migration activities. For detailed
information, see “Tools that facilitate your migration” on page 11.

6 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 3. Program migration checklists

This information includes checklists that you can use at various stages of migrating
an application to the z/OS V2R2 XL C/C++ compiler. These phases are:
v “Before you start your migration”
v “When you are compiling code” on page 8
v “When you are binding program objects or load modules” on page 9
v “When you are running an application” on page 10

For product history information to help you determine which topics in this
document apply to your migration, see “Applicability of product information” on
page 12.

Before you start your migration
Before you migrate programs or applications to z/OS V2R2 XL C/C++ compiler,
determine potential problems with your source code by reviewing the following
checklist:
1. Determine the group of compiler releases from which you are migrating:
v An earlier z/OS C/C++ compiler
v An OS/390 C/C++ compiler
v A pre-OS/390 C/C++ compiler

2. View the documentation updates and other post-release information provided
by the ReadMe files at http://www.ibm.com/support/
docview.wss?uid=swg27007531.

3. Review the changes introduced in z/OS V2R2 XL C/C++ compiler. See
Chapter 1, “New migration issues for z/OS V2R2 XL C/C++,” on page 3.

4. Review the changes that have been implemented since the last C/C++ compiler
that was used with the application:
v If you are migrating from an earlier z/OS C/C++ application, see Part 4,

“Migration of earlier z/OS C/C++ applications to z/OS V2R2 XL C/C++,”
on page 77.

v If you are migrating from an OS/390 C/C++ application, see Part 3,
“Migration of OS/390 C/C++ applications to z/OS V2R2 XL C/C++,” on
page 55.

v If you are migrating from a pre-OS/390 C/C++ compiler, see Part 2,
“Migration of pre-OS/390 C/C++ applications to z/OS V2R2 XL C/C++,” on
page 15.

5. Review the types of source code changes that have been identified since the last
C/C++ compiler that was used with the application:
v If you are migrating from an earlier z/OS C/C++ application, see

Chapter 14, “Source code compatibility issues with earlier z/OS C/C++
programs,” on page 79.

v If you are migrating from an OS/390 C/C++ application, see Chapter 9,
“Source code compatibility issues with OS/390 programs,” on page 57.

v If you are migrating from a pre-OS/390 C/C++ application, see Chapter 4,
“Source code compatibility issues with pre-OS/390 C/C++ programs,” on
page 17.

© Copyright IBM Corp. 2015 7

http://www.ibm.com/support/docview.wss?uid=swg27007531
http://www.ibm.com/support/docview.wss?uid=swg27007531

Note: If your application uses class libraries that have been modified or are no
longer supported, the resulting migration issues are discussed as source code
compatibility changes.

6. Use the INFO compiler option to identify the following potential problems:
v Functions not prototyped. See “INFO compiler option” on page 62.

Notes:

a. Function prototypes allow the compiler to check for mismatched
parameters.

b. Return parameters might be mis-matched, especially when the code
expects a pointer. (For example, malloc and family)

v Assignment of a long or a pointer to an integer, or assignment of an integer
to a pointer. See “Pointer incompatibilities” on page 19.

Note: This type of assignment could cause truncation. A reference to the
pointer might be invalid. Even assignments with an explicit cast will be
flagged. See “CHECKOUT(CAST) compiler option” on page 62.

7. If your code must be compliant with a specific ISO C++ standard, see Part 5,
“ISO Standard C++ compliance migration issues,” on page 115.

8. If you are using the IBM object model for an XL C++ program or application
that was last compiled or executed with the compat object model, see
“Alignment incompatibilities between object models” on page 102.

When you are compiling code
Before you use z/OS V2R2 XL C/C++ compiler to compile pre-existing source
code, review the following checklist:
1. Review the compile-time migration issues that have been identified in one of

the following topics:
v Chapter 15, “Compile-time migration issues with earlier z/OS C/C++

programs,” on page 87.
v Chapter 10, “Compile-time migration issues with OS/390 programs,” on page

59.
v Chapter 5, “Compile-time issues with pre-OS/390 C/C++ programs,” on

page 23.
2. If you are using a SYSLIB DD card to compile your XL C/C++ program, see

“Changes that affect SYSLIB DD cards” on page 28.
3. If your XL C/C++ program behaves unexpectedly after you re-compile it,

consider the following possibilities:
v At least one of the compiler options that you used does not function as it did

before, or it is no longer supported. See the appropriate information in this
document:
– If you are migrating from any application, see “Changes in compiler

option functionality” on page 91
– If you are migrating from an OS/390 C/C++ application, see “Changes in

compiler options” on page 60
– If you are migrating from a pre-OS/390 C/C++ application, see “Changes

in compiler options” on page 23
v The compiler invocation has been modified since you last used it.
v There might be a newer option or invocation that is more suitable for your

source program. See the appropriate information in this document:

8 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

– If you are migrating from any application, see “Changes that affect
compiler invocations” on page 96

– If you are migrating from a pre-OS/390 C/C++ application, see “Changes
that affect compiler invocations” on page 27

4. Are you using the NAMEMANGLING compiler option under ILP32 in a batch
environment? If so, see “ILP32 compiler option and name mangling” on page
99.

5. If you are using the IPA or IPA(LINK) option to compile the program, see the
appropriate information in this document:
v If you are migrating from any application, see:

– “Changes that affect JCL procedures” on page 98
– “IPA(LINK) compiler option and exploitation of 64-bit virtual memory” on

page 99
v If you are migrating from a pre-OS/390 C/C++ application, see

– “IPA Link step default changes” on page 63
– “IPA object module binary compatibility” on page 64

When you are binding program objects or load modules
Before you try to bind or relink pre-existing program objects or load modules,
review the following checklist:
1. Review the potential bind-time migration issues that have been identified since

the last C/C++ compiler that was used with the application:
v If you are migrating from any z/OS C/C++ application, see Chapter 16,

“Bind-time migration issues with earlier z/OS C/C++ programs,” on page
101.

v If you are migrating from an OS/390 C/C++ application, see Chapter 11,
“Bind-time migration issues with OS/390 C/C++ programs,” on page 71.

v If you are migrating from a pre-OS/390 C/C++ application, see Chapter 6,
“Bind-time migration issues with pre-OS/390 C/C++ programs,” on page 29.

2. Consider the following questions:
Are there any relevant library changes? For information, see Chapter 13,
“Migration issues resulting from class library changes between OS/390
C/C++ applications and Standard C++ library,” on page 75.
Do input/output or other operations have library dependencies that might
be affected by product changes since the program was last run? For more
information, see Chapter 8, “Input and output operations compatibility,” on
page 49.
Has there been any change in exception handling since the program was
last run? For information, see “Hardware and OS exceptions” on page 46 or
(for C++ programs) “cv-qualifications when the thrown and caught types
are the same” on page 122.
Are you using System Program C (SPC) facility modules? For information,
see “Assembler source code changes in System Programming C (SPC)
applications built with EDCXSTRX” on page 20.
Does the program need to access IBM CICS or IBM DB2 data? For
information, see Part 6, “Migration issues for C/C++ applications that use
other IBM products,” on page 131.
Does the C or C++ module include interlanguage calls (ILC)? For
information, see “C/370 modules with interlanguage calls (ILC)” on page 32
or more specific topics listed in the index.

Chapter 3. Program migration checklists 9

If you are migrating from a pre-OS/390 C/C++ application, are you using
the TARGET(OSV2R10) compiler option? If so, see “Namespace pollution
binder errors” on page 101.

When you are running an application
Before you try to run a legacy application under z/OS V2R2, review the following
checklist:
1. Review the potential runtime migration issues that have been identified:
v If the application has been run successfully under an earlier z/OS runtime

environment, see Chapter 17, “Runtime migration issues with earlier z/OS
C/C++ applications,” on page 105.

v If the application was last run successfully under an OS/390 runtime
environment, see Chapter 12, “Runtime migration issues with OS/390 C/C++
applications,” on page 73.

v If the application has not been run in an environment more recent than an
OS/390 runtime environment, see Chapter 7, “Runtime migration issues with
pre-OS/390 C/C++ applications,” on page 39.

2. If you need to retain the runtime behavior of the application, see “Retention of
previous runtime behavior” on page 106, “Retention of OS/390 runtime
behavior” on page 73, or “Retention of pre-OS/390 runtime behavior” on page
39, as appropriate.

3. If you are migrating from a runtime environment that predates the z/OS V1R5
Language Environment release, verify the following:
v The concatenation order of your libraries, to ensure that there are no links to

non-Language Environment interfaces.
v Data set names that are referenced by all customized procedures (such as JCL

and makefiles) have not been changed.

See “Runtime library compatibility issues with pre-OS/390 applications” on
page 43 and “Changes that affect customized JCL procedures” on page 41.

4. If your application does not run, it may be either a migration problem, or an
error in your program that surfaces as a result of enhancements to Language
Environment services. Do the following:
v Relink application load modules or program objects if any of the following

are true:
It is an IBM C/370™ application.
It contains ILCs between C and Fortran, or between C and COBOL. For
information, see “C/370 modules with interlanguage calls (ILC)” on page
32.
It is an SPC application that uses the library. For information, see
“Assembler source code changes in System Programming C (SPC)
applications built with EDCXSTRX” on page 20.
It contains calls to ctest(). For information, see “Requirements for
relinking C/370 modules that invoke Debug Tool” on page 32.
The PDS with the low-level qualifier SCEERUN (which belongs to the
runtime library), is not concatenated ahead of the PDS with the low-level
qualifier SIBMLINK (which belongs to the C-PL/I Common Library). For
information, see “Common library initialization compatibility issues with
C/370 modules” on page 44.
A message suggests either resetting an environment variable or relinking
application load modules or program objects. For information, see

10 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 16, “Bind-time migration issues with earlier z/OS C/C++
programs,” on page 101, “Runtime library messages” on page 39 or
“Program modules from an earlier release” on page 101.

v Use the STORAGE and HEAP runtime options to find uninitialized storage.
For information about initialization schemes and procedures, see “Common
library initialization compatibility issues with C/370 modules” on page 44.

Notes:

a. In some cases, applications will run with uninitialized storage, because
the runtime library may inadvertently clear storage, or because the
storage location referenced is set to zero.

b. IBM recommends STORAGE(FE,DE,BE) and HEAP(16,16,ANY,FREE) to
determine if your application is coded correctly. Any uninitialized
pointers will fail at first reference instead of accidentally referencing
storage locations at random.

c. The STORAGE or HEAP option will cause your program to run more
slowly. Do not use them for production; use them for development only.

v Look for undocumented interfaces.
It is possible that your application has dependencies on undocumented
interfaces. For example, you might have dependencies on library control
blocks, specific errno values, or specific return values. Alter your code to use
only documented interfaces, and then recompile the code and relink the load
modules or program objects. For information, see Chapter 8, “Input and
output operations compatibility,” on page 49.

v It is possible that your application is being initialized or terminated
differently because of changes in the runtime environment. See “Common
library initialization compatibility issues with C/370 modules” on page 44
and “Order of destruction for statically initialized objects” on page 120.

5. If your application does not require the features provided by z/OS V2R2, use
environment variables to maintain the expected behavior. For information, see
“Changes that affect compiler invocations” on page 96.

6. Contact your System Programmer to determine whether or not all service has
been applied to your system. Often, the problem you encounter has already
been reported to IBM, and a fix is available.

7. If you have verified with your System Programmer that all service has been
applied to your system, ask your Service Representative to open a Problem
Management Record (PMR) against the applicable IBM product. For
information on how to open a PMR, refer to http://
techsupport.services.ibm.com/guides/handbook.html.

Tools that facilitate your migration
This section describes tools available for your assistance during the migration
activity.

The Edge Portfolio Analyzer
The Edge Portfolio Analyzer can provide assistance in taking an inventory of your
existing XL C/C++ load modules. The object must be compiled with z/OS V1R10
XL C/C++ compiler or later for reporting of compiler options.

The Edge Portfolio Analyzer is no longer sold by IBM. For more information about
the Edge Portfolio Analyzer, visit their Web site at http://www.edge-
information.com.

Chapter 3. Program migration checklists 11

http://techsupport.services.ibm.com/guides/handbook.html
http://techsupport.services.ibm.com/guides/handbook.html
http://www.edge-information.com
http://www.edge-information.com

Note: Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Neither International Business Machines Corporation nor any of its affiliates
assume any responsibility or liability in respect of any results obtained by
implementing any recommendations contained in this article/document.
Implementation of any such recommendations is entirely at the implementor’s risk.

Applicability of product information
In Table 4, references to the products listed in the first column also apply to the
products in the second column.

Table 4. Product references

Referenced compilers Related products

Pre-OS/390 C/C++ compilers

Note: If you are migrating a program that
has been run successfully only with a
pre-OS/390 C/C++ compiler, contact your
service representative.

v IBM C/C++ for MVS/ESA V3R1 or V3R2

v IBM AD/Cycle C/370 V1R1 or V1R2

v IBM C/370 V1R1 or V1R2

v IBM C/370 V2R1 compiler and the IBM
C/370 V2R1 library

v IBM C/370 V2R1 compiler and the IBM
C/370 V2R2 library

OS/390 C/C++ compilers

Notes:

1. IBM OS/390 V1R1 C/C++ is the same as
IBM C/C++ for MVS/ESA V3R2.

2. IBM z/OS V1R1 C/C++ is the same as
IBM OS/390 V2R10 C/C++. IBM OS/390
V2R10 is also reshipped in z/OS V1R2
through to V1R6.

3. If you are migrating a program that has
been run successfully only with the
OS/390 V1R1 C/C++ compiler, contact
your service representative.

4. IBM OS/390 is no long in service.

v IBM OS/390 V1R1 C/C++ (reship of IBM
C/C++ for MVS/ESA V3R2)

v IBM OS/390 V1R2 or V1R3 C/C++

v IBM OS/390 V2R4, V2R5, V2R6, V2R7,
V2R8, V2R9, or V2R10 C/C++

v IBM z/OS V1R1 C/C++ (reship of IBM
OS/390 V2R10 C/C++)

12 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Table 4. Product references (continued)

Referenced compilers Related products

Earlier releases of the z/OS C/C++
compilers
Note: Service is available for compilers z/OS
XL C/C++ V1R13 through z/OS V2R2 XL
C/C++.

v IBM z/OS V1R1 C/C++ (equivalent to the
OS/390 V2R10 compiler)

v IBM z/OS V1R2 C/C++

v IBM z/OS V1R3 C/C++

v IBM z/OS V1R4 C/C++

v IBM z/OS V1R5 C/C++

v IBM z/OS V1R6 C/C++

v IBM z/OS V1R7 XL C/C++

v IBM z/OS V1R8 XL C/C++

v IBM z/OS V1R9 XL C/C++

v IBM z/OS V1R10 XL C/C++

v IBM z/OS V1R11 XL C/C++

v IBM z/OS V1R12 XL C/C++

v IBM z/OS V1R13 XL C/C++

v IBM z/OS V2R1 XL C/C++

v IBM z/OS XL C/C++ V2R1M1 web
deliverable

Version history of IBM C/C++ compilers and libraries
You can use the version history of IBM C/C++ compilers and libraries to help
determine whether specific information in this document applies to your
migration, as well as whether the information you seek is provided by this
document.

The version history pertains to each C/370, VM/ESA, VSE/ESA, MVS/ESA,
OS/390, z/OS and z/VM® compiler that has been distributed by IBM. It contains
the following information:
v Compiler name and ID
v General release, end-of-marketing, and end-of-service dates
v Runtime library

Note: For the version history of IBM C/C++ compilers and libraries, see
http://www-03.ibm.com/systems/z/os/zos/support/zos_eos_dates.html.

Chapter 3. Program migration checklists 13

|
|
|

http://www-03.ibm.com/systems/z/os/zos/support/zos_eos_dates.html

14 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 2. Migration of pre-OS/390 C/C++ applications to z/OS
V2R2 XL C/C++

Prior to IBM OS/390, C/C++ applications were created with one of the following
products:
v IBM C/C++ for MVS/ESA V3R1 or V3R2
v IBM AD/Cycle C/370 V1R1 or V1R2
v IBM C/370 V1R1 or V1R2
v IBM C/370 V2R1 compiler and the IBM C/370 V2R1 library
v IBM C/370 V2R1 compiler and the IBM C/370 V2R2 library

Notes:

1.

If your application uses IBM CICS information or statements, also see
Chapter 20, “Migration issues with earlier C/C++ applications that run CICS
statements,” on page 133.

2.

If your application uses IBM DB2 information or statements, also see
Chapter 21, “Migration issues with earlier C/C++ applications that use DB2,”
on page 139.

The following topics provide information relevant to migrating a pre-OS/390
application to z/OS V2R2 XL C/C++:
v Chapter 4, “Source code compatibility issues with pre-OS/390 C/C++

programs,” on page 17
v Chapter 5, “Compile-time issues with pre-OS/390 C/C++ programs,” on page 23
v Chapter 6, “Bind-time migration issues with pre-OS/390 C/C++ programs,” on

page 29
v Chapter 7, “Runtime migration issues with pre-OS/390 C/C++ applications,” on

page 39
v Chapter 8, “Input and output operations compatibility,” on page 49

© Copyright IBM Corp. 2015 15

16 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 4. Source code compatibility issues with pre-OS/390
C/C++ programs

When you migrate applications that predate IBM OS/390 C/C++ compilers to the
IBM z/OS V2R2 XL C/C++ product, be aware of the following migration issues:
v “Removal of IBM Open Class Library support”
v “Source code modifications necessitated by changes in runtime library”
v “Resource allocation and memory management issues”
v “Addressing incompatibilities” on page 18
v “Data type incompatibilities” on page 19
v “Changes required by programs with interlanguage calls” on page 20
v “Internationalization incompatibilities” on page 21

Note: Some source code compatibility issues can be addressed by modifying
runtime options. See Chapter 12, “Runtime migration issues with OS/390 C/C++
applications,” on page 73.

Removal of IBM Open Class Library support
As of z/OS V1R9, IBM Open Class® Library (IOC) dynamic link libraries (DLLs)
are no longer shipped with the z/OS XL C/C++ compiler.

Any source dependency on an IOC DLL must be removed.

For information about the libraries that are supported by the current release, see
z/OS XL C/C++ Runtime Library Reference.

Source code modifications necessitated by changes in runtime library
When you migrate programs to z/OS V2R2 XL C/C++, review “Changes in
runtime option specification” on page 41 for changes that will necessitate changes
in your source code. Also review your use of the #pragma runopts directive in your
source code.

The #pragma runopts directive
If occurrences of the ISASIZE/ISAINC, STAE/SPIE, LANGUAGE, or REPORT
runtime options are specified by a #pragma runopts directive in your source code,
you might want to change them to the supported equivalent before recompiling to
avoid a warning or informational message during compilation.

For more information on preprocessor directives, refer to z/OS XL C/C++ Language
Reference.

Resource allocation and memory management issues
Incompatibilities in resource allocation and memory management might cause
unexpected results in the output of your program. In your source code, you should
be aware of potential problems when you use any of the following operators or
structures:
v “The sizeof operator applied to a function return type” on page 18

© Copyright IBM Corp. 2015 17

v “A user-defined global new operator and array new”

The sizeof operator applied to a function return type
Figure 1 illustrates how the behavior of sizeof, when applied to a function return
type, was changed in the C/C++ for MVS/ESA V3R2 compiler.

If the example in Figure 1 is compiled with a compiler prior to C/C++ for
MVS/ESA V3R2 compiler, char is widened to int in the return type, so sizeof
returns s = 4.

If the example in Figure 1 is compiled with the C/C++ for MVS/ESA V3R2
compiler, or with any OS/390 C/C++ compiler, the size of the original char type is
retained. In Figure 1, sizeof returns s = 1. The size of the original type of other
data types such as short, and float is also retained.

If your code has a dependency on the behavior of the sizeof operator, be aware
that with the OS/390 V2R4 C/C++ and subsequent compilers, you can use the
#pragma wsizeof directive or the WSIZEOF compiler option to get sizeof to return
the widened size for function return types.

For more information on #pragma wsizeof, see z/OS XL C/C++ Language Reference,
SC14-7308. For more information on the WSIZEOF compiler option, see z/OS XL
C/C++ User's Guide, SC14-7307.

A user-defined global new operator and array new
If you are migrating from the C/C++ for MVS/ESA V3R2 compiler to z/OS V2R2
XL C/C++, and you have written your own global new operator, it is no longer
called when you create an array object: In this case, you must add a local
overloaded operator.

Addressing incompatibilities
Addressing incompatibilities might cause unexpected results in the output of your
program. In your source code, you should be aware of the following migration
issues:
v “C/370 V2 main program and main entry point” on page 19
v “Pointer incompatibilities” on page 19

char foo();
..
s = sizeof foo();

Figure 1. Statements that apply the sizeof operator to a function return type

void* operator new (size_t sz) {
g_new_count++;
return MyMalloc(sz);

}

main() {
X new_array[10]; // the global new operator

// shown above is not called
// in compilers for OS/390 or later

}

Figure 2. Example of user-defined global new operator and array new

18 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

C/370 V2 main program and main entry point
C/370 V2 programs that are fetched must be recompiled without a main entry
point. Any attempt to fetch a main program will fail.

Pointer incompatibilities
According to the ISO C Standard, pointers to void types and pointers to functions
are incompatible types. The C/370, AD/Cycle C/370, IBM C/MVS™, and z/OS XL
C compilers perform some type-checking, such as in assignments, argument
passing on function calls, and function return codes.

Note: If you are not conforming to ISO rules for the use of pointer types, your
runtime results may not be as expected, especially when you are using the
OPTIMIZE compiler option.

With the AD/Cycle C/370, and the C/C++ for MVS/ESA compilers, you could not
assign NULL to an integer value. The statement shown in Figure 3 was not
allowed:

With the z/OS XL C compilers, you can assign NULL pointers to void types only
if you specify LANGLVL(COMMONC) when you compile your program. For
information about constructs supported by LANGLVL(COMMONC) but not by
LANGLVL(EXTENDED) or LANGLVL(ANSI), refer to LANGLVL compiler option
in z/OS XL C/C++ User's Guide, SC14-7307.

Data type incompatibilities
Data type incompatibilities might cause unexpected results in the output of your
program. In your source code, you should be aware of potential migration issues:
v “Assignment restrictions for packed structures and unions”
v “DSECT header files and packed structures”

Assignment restrictions for packed structures and unions
With the z/OS XL C compiler, you can no longer do the following:
v Assign packed and non-packed structures to each other.
v Assign packed and non-packed unions to each other.
v Pass a packed union or packed structure as a function parameter if a non-packed

version is expected.
v Pass a non-packed union or non-packed structure as a function parameter if a

packed version is expected.

If you attempt to do so, the compiler issues an error message.

DSECT header files and packed structures
Header files generated by the DSECT utility use #pragma pack rather than the
_Packed qualifier to pack structures or unions. In rare cases, you might have to
modify and recompile your code.

Note: The _Packed qualifier is an IBM extension of the C language that was
introduced with the C/370 family of compilers. It can also be applied to C++

int i = NULL;

Figure 3. Assignment of NULL to an integer value

Chapter 4. Source code compatibility issues with pre-OS/390 C/C++ programs 19

classes. If you specify the _Packed qualifier on a structure or union that contains
another structure or union as a member, the qualifier is not passed to the
contained structure or union.

Changes required by programs with interlanguage calls
If your code calls functions that have mixed-language input or output, you should
be aware of the following potential source code issues:
v “Explicit program mask manipulations”
v “Assembler source code changes in System Programming C (SPC) applications

built with EDCXSTRX”

Explicit program mask manipulations
Programs created with the C/370 V2 compiler and library that explicitly
manipulated the program mask might require source changes.

Changes are required if you have one of the following types of programs:
v A C program containing interlanguage calls (ILC), where the invoked code uses

the S/370 decimal instructions that might generate an unmasked decimal
overflow condition, requires modification for migration. Use either of the
following two methods:
– Preferred method: If the called routine is assembler, save the existing mask,

set the new value, and when finished, restore the saved mask.
– Change the C code so that the produced SIGFPE signal is ignored in the

called code. In the following example, the SIGNAL calls surround the
overflow-producing code. The SIGFPE exception handling is disabled before
the problem signal is encountered, and then reenabled after it has been
processed. See Figure 4.

v A C program containing assembler ILCs that explicitly alter the program mask,
and do not explicitly save and restore it, also requires modification for
migration.
If user code explicitly alters the state of the program mask, the value before
modification must be saved, and the value restored to its former value after the
modification. You must ensure that the decimal overflow program mask bit is
enabled during the execution of C code. Failure to preserve the mask may result
in unpredictable behavior.

These changes also apply in a System Programming C environment, and to
Customer Information Control System (CICS) programs in the handling and
management of the PSW mask.

Assembler source code changes in System Programming C
(SPC) applications built with EDCXSTRX

If you have SPC applications that are built with EDCXSTRX and use dynamic C
library functions, note that the name of the C library function module was changed
from EDCXV in C/370 V2 to CEEEV003 with the Language Environment V1R5

signal(SIGFPE, SIG_IGN); /* ignore exceptions */
...
callit(): /* in called routine */
...
signal(SIGFPE, SIG_DFL); /* restore default handling */

Figure 4. Statements that ignore SIGFPE exception and restore default exception handling

20 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

release. Change the name from EDCXV to CEEEV003 in the assembler source of
your program that loads the library, and reassemble.

Internationalization incompatibilities
If your code will be used with different locales, you should be aware of the
information in “Support of alternate code points.”

Support of alternate code points
The following alternate code points are not supported by z/OS V2R2 XL C/C++:
v X'8B' as alternate code point for X'C0' (the left brace)
v X'9B' as alternate code point for X'D0' (the right brace)

These alternate code points are supported by the C/370 and AD/Cycle C/370
compilers (the NOLOCALE option is required if you are using the AD/Cycle
C/370 V1R2 compiler).

For more information about using coded character sets and locale functions, see
z/OS XL C/C++ Programming Guide, SC14-7315.

Chapter 4. Source code compatibility issues with pre-OS/390 C/C++ programs 21

22 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 5. Compile-time issues with pre-OS/390 C/C++
programs

When you use z/OS V2R2 XL C/C++ to compile programs that were last compiled
as part of a pre-OS/390 C/C++ application, be aware of the following migration
issues:
v “Changes in compiler listings, messages, and return codes”
v “Changes in compiler options”
v “Changes that affect compiler invocations” on page 27
v “Changes that affect SYSLIB DD cards” on page 28

Changes in compiler listings, messages, and return codes
From release to release, message contents can change and, for some messages,
return codes can change. Errors can become warnings, and warnings can become
errors. You must update any application that is affected by changes in message
contents or return codes. Do not build dependencies on message contents, message
numbers, or return codes. See z/OS XL C/C++ Messages for a list of compiler
messages.

Listing formats, especially the pseudo-assembler parts, will continue to change
from release to release. Do not build dependencies on the structure or content of
listings. For information about C listings or the C++ listings for the current release,
refer to z/OS XL C/C++ User's Guide, SC14-7307.

Macro redefinitions might result in severe errors
As of z/OS V1R7 XL C, the behavior of macro redefinition has changed. For
certain language levels, the XL C compiler will issue a severe error message
instead of a warning message when a macro is redefined to a value that is
different from the first definition.

For information about the language levels that are affected, see “LANGLVL(ANSI),
LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions”
on page 25 and “LANGLVL(EXTENDED) compiler option and macro
redefinitions” on page 25.

Changes in compiler options
This topic describes changes that would affect your use of compiler options.

Compiler options that are no longer supported
This topic lists compiler options that were supported in pre-OS/390 compilers but
not in subsequent compilers.

DECK compiler option
As of z/OS V1R2 C/C++ compiler, the DECK compiler option is no longer
supported. If you want to route output to DD:SYSPUNCH, use
OBJECT(DD:SYSPUNCH).

© Copyright IBM Corp. 2015 23

LANGLVL(COMPAT) compiler option
In C/C++ for MVS/ESA V3R2, the LANGLVL(COMPAT) option directed the
compiler to generate code that is compatible with older levels of C and C++. As of
z/OS V1R2 C/C++ compiler, the LANGLVL(COMPAT) compiler option is no
longer supported.

OMVS compiler option
As of z/OS V1R2 C/C++ compiler, the OMVS compiler option is no longer
supported. The replacement for it is the OE option.

SRCMSG compiler option
As of z/OS V1R2 C/C++ compiler, the SRCMSG compiler option is no longer
supported.

SYSLIB, USERLIB, SYSPATH and USERPATH compiler options
In IBM C/C++ for MVS/ESA V3R2 compiler, the SYSLIB, USERLIB, SYSPATH and
USERPATH compiler options directed the compiler to specified include files. As of
z/OS V1R2 C/C++ compiler, these compiler options are no longer supported.
Instead, use the SEARCH and LSEARCH options to find include files.

Compiler options that were introduced in OS/390 C/C++ or
later

When you are compiling pre-OS/390 C/C++ source code, you should treat
compiler options that were introduced in OS/390 or later as new compiler options.

ENUMSIZE compiler option
As of z/OS V1R7 XL C/C++, selected enumerated (enum) type declarations in
system header files are protected to avoid potential execution errors. This allows
you to specify the ENUMSIZE compiler option with a value other than SMALL
without risking incorrect mapping of enum data types (for example, if they were
used inside of a structure). For more information, see “ENUMSIZE(SMALL) and
protected enumeration types in system header files” on page 92.

z/OS V1R2 introduced the ENUMSIZE option as a means for controlling the size
of enumeration types. The default setting, ENUMSIZE(SMALL), provides the same
behavior that occurred in previous releases of the compiler.

If you want to continue to use the ENUMSIZE option, it is recommended that the
same setting be used for the whole application; otherwise, you might find
inconsistencies when the same enumeration type is declared in different
compilation units. Use the #pragma enum, if necessary, to control the size of
individual enumeration types (especially in common header files).

Changes in compiler option functionality

HALT compiler option
As of C/C++ for MVS/ESA V3R2 compiler, the C++ compiler does not accept 33
as a valid parameter for the HALT compiler option.

HWOPTS compiler option
In AD/Cycle C/370 V1, the HWOPTS compiler option directed the compiler to
generate code to take advantage of different hardware. As of z/OS V1R2 C/C++
compiler, the HWOPTS compiler option is no longer supported. The replacement
for it is the ARCHITECTURE option.

24 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

INFO compiler option
As of z/OS V1R2 C/C++, the INFO option default has been changed from
NOINFO to INFO(LAN) for C++.

As of z/OS V1R6 C/C++, the INFO option is supported by the C compiler as well
as the C++ compiler.

Note: The CHECKOUT C compiler option will continue to be supported for
compatibility with earlier releases only.

INLINE compiler option
For C, the default for the INLINE compiler option was changed to 100 ACUs
(Abstract Code Units) in the C/C++ for MVS/ESA compiler. Hence, with C/C++
for MVS/ESA V3R2, OS/390 C/C++, and z/OS XL C/C++ compilers, the default
is 100 ACUs. In the past, the default was 250 ACUs.

For C++, the z/OS V1R1 and earlier compilers did not accept the INLINE option
but did perform inlining at OPT with a fixed value of 100 for the threshold and
2000 for the limit. As of z/OS V1R2, the C++ compiler accepts the INLINE option,
with defaults of 100 and 1000 for the threshold and limit, respectively. As a result
of this change, code that used to be inlined may no longer be inlined due to the
decrease in the limit from 2000 to 1000 ACUs.

LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler
option and macro redefinitions
As of z/OS V1R7 XL C, the treatment of macro redefinitions has changed. For
LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2), the XL C compiler will
issue a severe message instead of a warning message when a macro is redefined to
a value that is different from the first definition.

Note: Compare the treatment of macro redefinitions for these LANGLVL
sub-options with that for “LANGLVL(EXTENDED) compiler option and macro
redefinitions.”

LANGLVL(EXTENDED) compiler option and macro redefinitions
As of z/OS V1R7 XL C, you can redefine a macro that has not been first undefined
with LANGLVL(EXTENDED).

With z/OS V1R6 C and previous C compilers, this test will return "1". As of z/OS
V1R7 XL C, this test will return "2".

Note: Compare the treatment of macro redefinitions for LANGLVL(EXTENDED)
with that for “LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler
option and macro redefinitions.”

#define COUNT 1
#define COUNT 2 /* error */

Figure 5. Macro redefinition

#define COUNT 1
#define COUNT 2

int main () {
return COUNT;

}

Figure 6. Macro redefinition under LANGLVL(EXTENDED)

Chapter 5. Compile-time issues with pre-OS/390 C/C++ programs 25

LOCALE compiler option
As of z/OS V1R9 XL C/C++, the __LOCALE__ macro is defined to the name of
the compile-time locale. If you specified LOCALE(strinf string literal), the compiler
uses the runtime function setlocale(LC_ALL "string literal") to determine the name
of the compile-time locale. If you do not use the LOCALE compiler option, the
macro is undefined.

Prior to z/OS V1R9 XL C/C++, the __LOCALE__ macro was defined to "" when
the LOCALE option was specified without a suboption.

OPTIMIZE optimization level mapping
As compilers are developed, the OPTIMIZE optimization levels are remapped.

In the IBM C/370 compilers, OPTIMIZE was mapped to OPT(1).

In the IBM AD/Cycle C/370 compilers:
v OPT(0) was mapped to NOOPT
v OPT and OPT(1) were mapped to OPT(1)
v OPT(2) was mapped to OPT(2)

In the C/C++ for MVS/ESA V3R2 compiler and the OS/390 V1R1 compiler:
v OPT(0) was mapped to NOOPT
v OPT, OPT(1) and OPT(2) were mapped to OPT

In the OS/390(r) V1R2, V1R3, V2R4, and V2R5 C/C++ compilers:
v OPT(0) mapped to NOOPT
v OPT and OPT(1) mapped to OPT(1)
v OPT(2) mapped to OPT(2)

As of OS/390(r) V2R6 C/C++:
v OPT(0) maps to NOOPT
v OPT, OPT(1) and OPT(2) map to OPT(2)

As of z/OS V1R5 C/C++, OPT(3) provides the compiler's highest and most
aggressive level of optimization. OPT(3) is recommended only when the desire for
runtime improvement outweighs the concern for minimizing compilation
resources.

SEARCH and LSEARCH compiler options
Prior to C/C++ for MVS/ESA V3R2 compilers, if you used the LSEARCH option
more than once, the compiler would only search the locations specified for the last
LSEARCH option.

As of C/C++ for MVS/ESA V3R2 compilers (including z/OS XL C/C++ compiler),
the compiler searches all of the locations specified for all of the SEARCH options,
from the point of the last NOSEARCH option. Previously, only the locations
specified for the last SEARCH option were searched.

SQL compiler option and SQL EXEC statements
For migration information about using the SQL compiler option, see Chapter 21,
“Migration issues with earlier C/C++ applications that use DB2,” on page 139

26 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

TEST compiler option
As of the OS/390 C/C++ compilers, the default for the PATH suboption of the
TEST option has changed from NOPATH to PATH. Also, the INLINE option is
ignored when the TEST option is in effect at OPT(0), but the INLINE option is no
longer ignored if OPT(1), OPT(2), or OPT(3) is in effect.

As of C/C++ MVS V3R2 compiler, the following restriction applies to the TEST
compiler option: The maximum number of lines in a single source file cannot
exceed 131,072. If you exceed this limit, the results from the Debug Tool and
Language Environment dump services are undefined.

As of z/OS V1R6 C/C++, when using the c89/c++ utility, the -g flag has changed
from specifying the TEST option to DEBUG(FORMAT(DWARF)). For more
information, see “Debug format specification” on page 97.

Note: Under ILP32 only, you can use the environment variable
{_DEBUG_FORMAT} to determine the debug format (DWARF or ISD) to which the
-g flag option is translated. For information about this environment variable and
the c89/c++ utility, refer to the c89 utility information in z/OS XL C/C++ User's
Guide, SC14-7307.

Changes that affect compiler invocations
When you invoke the compiler, you should be aware of potential problems in the
following areas:
v “IPA compiler option and very large applications”
v “Customized JCL and the CXX format”
v “CBCI and CBCXI procedures in JCL” on page 28

IPA compiler option and very large applications
As of z/OS V1R12 XL C/C++, when using the IPA compiler option to compile
very large applications, you might need to increase the size of the work file
associated with SYSUTIP DD in the IPA Link step. If you are linking the
application in a USS environment, you can control the size of this work file with
the _CCN_IPA_WORK_SPACE environment variable. If particularly large source
files are compiled with IPA, the default size of the compile-time work files might
also need to be increased. These can be modified via the prefix_WORK_SPACE
environment variables.

Customized JCL and the CXX format
The CBCC, CBCCL, and CBCCLG procedures, which compile C++ code, include
parameter CXX when the following compilers are used:
v C/C++ for MVS/ESA V3R2
v OS/390 C/C++
v z/OS C/C++

If you have written your own JCL to compile a C++ program, you must include
this parameter; otherwise, the C compiler is invoked.

When you pass options to the compiler, you must specify parameter CXX. You
must use the following format to specify options:
runtime options/CXX compiler options

Chapter 5. Compile-time issues with pre-OS/390 C/C++ programs 27

CBCI and CBCXI procedures in JCL
As of z/OS V1R5 C/C++ compiler, the CBCI and CBCXI procedures contain the
variable CLBPRFX. If you have any JCL that uses these procedures, you must
either customize these procedures (for example, at installation time) or modify
your JCL to provide a value for CLBPRFX.

Changes that affect SYSLIB DD cards
If your batch job uses a SYSLIB concatenation to search for files, remove those job
steps and use the SEARCH compiler option instead.

Change in SCLBH logical record length
As of z/OS V1R2 C/C++ compiler, the logical record length for the SCLBH data
sets is increased from 80 bytes to 120 bytes. Because of this change, the SYSLIB DD
card (shown in Figure 7) that specifies library search paths no longer works, and
must be removed from your JCL. In its place, you must use the SEARCH compiler
option.

Example: See the following example.
SEARCH(//’CEE.SCEEH.+’,//’CBC.SCLBH.+’)

Using the SEARCH compiler option instead of a SYSLIB concatenation allows the
C/C++ compiler to search for files based on both file name and file type.

//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR
// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR
// DD DSN=CBC.SCLBH.H,DISP=SHR

Figure 7. Example of SYSLIB DD cards that must be removed as of z/OS V1R2 C/C++ compiler

28 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 6. Bind-time migration issues with pre-OS/390 C/C++
programs

This information helps you understand compatibility issues related to binding or
linking executable C/C++ programs from applications that predate IBM OS/390
C/C++ compiler.

The output of a prelinking, linking, or binding process depends on where the
programs are stored:
v When the programs are stored in a PDS, the output is a load module.
v When the programs are stored in a PDSE or in UNIX System Services files, the

output is a program object.

For more information, see "Prelinking and linking z/OS XL C/C++ programs" and
"Binding z/OS XL C/C++ programs" in z/OS XL C/C++ User's Guide.

Note: The terms in these topics that are associated with linking (bind, binding,
link, link-edit) refer to the process of creating an executable program from object
modules.

Generally, pre-OS/390 C/C++ load modules or programs execute successfully
under z/OS V2R2 without relinking. This information highlights exceptions and
shows how to solve specific problems in compatibility.

Note: If you are not sure which libraries were used to link an executable program,
see “Library release level in use.”

Executable program compatibility problems requiring source changes are discussed
in Chapter 4, “Source code compatibility issues with pre-OS/390 C/C++
programs,” on page 17.

When you use z/OS V2R2 XL C/C++ to bind programs that were last linked as
part of pre-OS/390 C/C++ applications, be aware the following information:
v “Binder invocation changes” on page 31
v “Changes due to customizations of the runtime environment” on page 31
v “Incompatibilities in external references” on page 32
v “Requirements for relinking C/370 modules that invoke Debug Tool” on page 32
v “C/370 modules with interlanguage calls (ILC)” on page 32

Also see “Common library initialization compatibility issues with C/370 modules”
on page 44.

Library release level in use
The __librel() function is a System/370 extension to SAA C. It returns the release
level of the library that your program is using, in a 32-bit integer. With Language
Environment services, a field containing a number that represents the library
product.

© Copyright IBM Corp. 2015 29

The __librel() return value is a 32-bit integer intended to be viewed in
hexadecimal format as shown in Table 5. The hexadecimal value is interpreted as
0xPVRRMMMM, where:
v The first hex digit P represents the product.
v The second hex digit V represents the version.
v The third and fourth hex digits RR represent the release.
v The fifth through eighth hex digits MMMM represent the modification level.

Table 5. Return values for the __librel() function

Product librel value

C/370 V2R2 0x02020000

Language Environment V1R5 0x11050000

OS/390 V1R1
Note: The _librel return value for OS/390
V1R1, 5645-001 is the same as it is for
Language Environment V1R5 runtime
libraries.

0x11050000

OS/390 V1R2 0x21020000

OS/390 V1R3 0x21030000

OS/390 V2R4 0x22040000

OS/390 V2R6 0x22060000

OS/390 V2R7 0x22070000

OS/390 V2R8 0x22080000

OS/390 V2R9 0x22090000

OS/390 V2R10 0x220A0000

z/OS V1R1 0x220A0000

z/OS V1R2 0x41020000

z/OS V1R3 0x41030000

z/OS V1R4 0x41040000

z/OS V1R5 0x41050000

z/OS V1R6 0x41060000

z/OS V1R7 0x41070000

z/OS V1R8 0x41080000

z/OS V1R9 0x41090000

z/OS V1R10 0x410A0000

z/OS V1R11 0x410B0000

z/OS V1R12 0x410C0000

z/OS V1R13 0x410D0000

z/OS V2R1 0x42010000

In C/370 V2, the high-order 8 bits were used to return the version number. Now
these 8 bits are divided into two fields. The first 4 bits contain the product number
and the second 4 bits contain the version number.

30 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

You must modify programs that use the information returned from __librel(). For
more information on __librel(), see z/OS XL C/C++ Runtime Library Reference,
SC14-7314.

Binder invocation changes
If your application behaves unexpectedly after you relink the pre-OS/390 C/C++
modules and it includes user-developed exit routines, be aware that rules of
precedence have changed.

When you bind programs that were previously compiled with an OS/390 compiler
and library, you should also be aware that the following migration issues could
also apply to your binder invocations:
v “Namespace pollution binder errors” on page 101
v “Program modules from an earlier release” on page 101

Impact of changes to CC EXEC invocation syntax
As of z/OS V1R2 C/C++ compiler, there are changes in the CC EXEC invocation
syntax.

At customization time, your system programmer can modify the CC EXEC to
accept:
v Only the original syntax (the one supported by compilers before C/C++ for

MVS/ESA V3R2).
v Only the updated syntax.
v Both syntaxes.

The CC EXEC should be customized to accept only the updated syntax.

If the CC EXEC is customized to accept both the original and additional
invocations, you must choose to use either the original invocations or the updated
invocations. You cannot invoke the CC command by using a mixture of both
syntaxes. Be aware that the original syntax does not support UNIX System Services
files provided with z/OS UNIX System Services files.

Refer to the z/OS Program Directory for more information about installation and
customization, and to the z/OS XL C/C++ User's Guide for more information about
compiler options.

Changes due to customizations of the runtime environment
Your installation of z/OS V2R2 XL C/C++ might have been customized in ways
that could affect application behavior at bind-time.

User-developed exit routines
If your application behaves unexpectedly after you relink the pre-OS/390 C/C++
modules and if it includes user-developed exit routines, be aware that rules of
precedence have changed. If both CEEBXITA and IBMBXITA are present in a
relinked C/370 module, CEEBXITA will have precedence over IBMBXITA.

Abnormal termination exit routines and dump formats
With Language Environment services in a batch environment, abnormal
termination exit routine CEEBDATX is automatically linked at installation time.

Chapter 6. Bind-time migration issues with pre-OS/390 C/C++ programs 31

This change affects you if you have supplied, or need to supply, your own exit
routine. The sample exit routine had been available in the sample library provided
with IBM AD/Cycle LE/370 V1R3. It automatically generates a system dump (with
abend code 4039) whenever an abnormal termination occurs.

You can trigger the dump by ensuring that SYSUDUMP is defined in the GO step
of the JCL that you are using (for example, by including the statement SYSUDUMP
DD SYSOUT=*).

Note: As of C/C++ for MVS/ESA V3R2, the standard JCL procedures shipped
with the compiler do not include SYSUDUMP.

If SYSUDUMP is not included in your JCL, or is defined as DUMMY, the dump
will be suppressed.

Incompatibilities in external references
As of z/OS V1R3 C/C++ compiler, external names (such as entry points and
external references) can be up to 32,767 bytes long.

As of z/OS V1R2 C/C++ compiler, the binder imposes a limit of 1024 characters
for the length of external names. Both the OS/390 C++ compiler and z/OS C++
compiler might generate mangled names that are longer than this limit. This
problem is more likely to occur when using the Standard Template Library with
the z/OS V1R2 C++ compiler.

If linking programs generates mangled names that exceed the limit, do one of the
following actions:
v Reduce the length of the C++ class names.
v Use the #pragma map directive to map the long name to a short one.
v For NOXPLINK applications, use the prelinker.

Requirements for relinking C/370 modules that invoke Debug Tool
If your C/370 application has any C/C++ modules that reference the C/370 library
code @@CTEST, you cannot execute them under z/OS V2R2 until you:
1. Replace the @@CTEST objects, as described in “Programs that require the C370

Common Library environment” on page 36 and in “Linkage editor control
statements for modules that contain calls to COBOL routines” on page 34.

2. Relink all modules that contain calls to ctest().

C/370 modules with interlanguage calls (ILC)
Table 6 outlines when a relink of ILC applications is required, based on languages
found in the executable program: If you have multiple languages in the executable
program, then the sum of the restrictions applies. For example: if you have C, PL/I
and Fortran in the executable program, then it should be relinked because Fortran
needs to be relinked. Refer to z/OS V2R1.0 Language Environment Writing
Interlanguage Communication Applications for more information.

Table 6. Migrations that require relinking

Language Relink required

Assembler No

32 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Table 6. Migrations that require relinking (continued)

Language Relink required

PL/I No

Fortran Yes

COBOL Yes
Note: If the C/370 ILC application is built
(relinked) after the PTF for APAR PN74931
is applied, no relink is required to run under
z/OS V2R2. Otherwise a relink is required.

Interlanguage calls between assembler and PL/I language
modules

Programs that contain interlanguage calls to and from assembler or PL/I language
modules do not need to be relinked.

Function calls between C and Fortran modules
For applications that use Language Environment services, Fortran/C interlanguage
calls were not supported prior to the Language Environment V1R5 release and
C/C++ for MVS/ESA. Before you can use Fortran/C ILC applications with
Language Environment V1R5 or later, you must relink all Fortran/C ILC
applications that contain pre-Language Environment C or Fortran library routines.

Before you relink those applications, be aware of the following constraints:
v You can run them with z/OS V2R2 XL C/C++ compiler only after they are

relinked.
v You cannot continue to run them with the C/370 library after they are relinked.

Function calls to and from COBOL modules
The Fortran ILC rules apply to programs that contain interlanguage calls between
C/370 and COBOL, unless you relink them with the C/370 V2R1 or V2R2 library
that has the PTF for APAR PN74931 applied. This PTF replaces the C/370 V2R1
and V2R2 link-edit stubs so that they tolerate Language Environment service calls.
After your application is relinked using the modified C/370 V2R1 or V2R2 stubs,
you can run the application with any of the following runtime environments:
v C/370 V2R1 runtime library
v C/370 V2R2 runtime library
v Language Environment runtime libraries

If you run applications with interlanguage calls (ILC) to or from COBOL without
applying the PTF for APAR PN74931 and then relinking the C/370 programs that
contain the ILC, be aware of the following constraints:
v You can run those applications with z/OS V2R2 only after they are relinked.
v You cannot continue to run those applications with the C/370 library after they

are relinked.

Compatibility with earlier and later releases
The PTF for APAR PN74931 replaces the link-edit stubs so that they tolerate
Language Environment service calls. After your application is relinked using the

Chapter 6. Bind-time migration issues with pre-OS/390 C/C++ programs 33

modified C/370 V2, you can run the application with the C/370 V2R1 runtime
library, the C/370 V2R2 runtime library, or the Language Environment runtime
libraries.

Before you can relink your C/370-COBOL ILC application with Language
Environment services only, you must replace the old library objects @@C2CBL and
@@CBL2C, as described in “Programs that require the C370 Common Library
environment” on page 36 and “Linkage editor control statements for modules that
contain calls to COBOL routines.” After you replace those objects, the affected
modules will be executable only with Language Environment services.

Impact of changes in packaging of language libraries
As of z/OS V1R6, Language Environment runtime libraries contain more modules
than the pre-Language Environment libraries. For example, all of the Language
Environment C/C++ language libraries are packaged in both SCEERUN and
SCEERUN2, instead of SCEERUN only.

The impact of these packaging changes for pre-OS/390 C/C++ applications is that
certain Language Environment modules can invade user-defined name spaces. If a
program uses modules that are the same as those used for Language Environment
module names (such as fetch()), you must ensure that the program link libraries
are loaded before the Language Environment libraries.

Linkage editor control statements for modules that contain calls
to COBOL routines
This topic lists the linkage editor control statements required to relink modules
that contain ILCs between C and COBOL, or between C and Fortran. The object
modules are compatible with the Language Environment service modules;
however, the ILC linkage between the applications and the library has changed.
You must relink these applications using the JCL shown in Figure 8 on page 36 and
the control statements that fit your requirements from the following list. The
INCLUDE SYSLIB(@@CTDLI) is necessary only if your program will invoke IBM
IMS facilities using the z/OS XL C library function ctdli() and if the z/OS XL C
function was called from a COBOL main program.

Control statements for various combinations of ILCs and compiler options are as
follows. The modules referenced by SYSLMOD contain the routines to be relinked.
1. C main() statically calling COBOL routine B1 or dynamically calling the

COBOL routine through the use of fetch(), where B1 was compiled with the
RES option. Relink the C module:

MODE AMODE(31),RMODE(ANY)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP1)
ENTRY CEESTART MAIN ENTRY POINT
NAME SAMP1(R)

2. C main() statically calling COBOL routine B2 or dynamically calling the
COBOL routine through the use of fetch(), where B2 was compiled with the
NORES option. Relink the C module:

MODE AMODE(24),RMODE(24)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

34 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES
INCLUDE SYSLMOD(SAMP2)
ENTRY CEESTART MAIN ENTRY POINT
NAME SAMP2(R)

3. C main() fetches a C1 function that statically calls a COBOL routine B1
compiled with the RES option. Relink the C module:

MODE AMODE(31),RMODE(ANY)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP3)
ENTRY C1 ENTRY POINT TO FETCHED ROUTINE
NAME SAMP3(R)

4. C main() fetches a C1 function that statically calls a COBOL routine B1 that is
compiled with the NORES option. Relink the C module:

MODE AMODE(24),RMODE(24)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES
INCLUDE SYSLMOD(SAMP4)
ENTRY C1 ENTRY POINT TO FETCHED ROUTINE
NAME SAMP4(R)

5. A COBOL main CBLMAIN compiled with the RES option statically or
dynamically calls a C1 function. Relink the COBOL module:

MODE AMODE(31),RMODE(ANY)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(IGZEBST)
INCLUDE SYSLIB(@@CBL2C) REQUIRED FOR COBOL CALLING C
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP5)
ENTRY CBLRTN COBOL ENTRY POINT
NAME SAMP5(R)

6. A COBOL main CBLMAIN compiled with the NORES option statically or
dynamically calls a C1 function. Relink the COBOL module:

MODE AMODE(24),RMODE(24)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(IGZENRI)
INCLUDE SYSLIB(@@CBL2C) REQUIRED FOR COBOL CALLING C
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP6)
ENTRY CBLRTN COBOL ENTRY POINT
NAME SAMP6(R)

7. C main() calls a Fortran routine. Relink the C module:
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@CTOF) REQUIRED FOR C CALLING Fortran
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP7)
ENTRY CEESTART MAIN ENTRY POINT
NAME SAMP7(R)

8. A Fortran main() calls a C function. Relink the C module:
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@FTOC) REQUIRED FOR Fortran CALLING C

Chapter 6. Bind-time migration issues with pre-OS/390 C/C++ programs 35

INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP8)
ENTRY CEESTART MAIN ENTRY POINT
NAME SAMP8(R)

For other related Fortran considerations, refer to z/OS Language Environment
Programming Guide.

Programs that require the C370 Common Library environment
Some legacy modules will require the C/370 Common Library environment unless
they have been converted to use Language Environment services. These
incompatible modules might, for example, contain ILCs to COBOL or use the
library function ctest() to invoke the Debug Tool.

There are several methods of converting C/370 modules to use Language
Environment services.

These methods are:
v Link from the original objects, using Language Environment services. The

EDCSTART and CEEROOTB modules must be explicitly included.
v Relink the C/370 program, using the Language Environment CSECT

replacement. The EDCSTART and CEEROOTB modules must be explicitly
included.
Figure 8 shows an example of a job that uses this method. The job converts the
C/370 program by relinking it and explicitly including the Language
Environment CEESTART module, so that it replaces the C/370 CEESTART
module.
This is a general-purpose job. The comments show the other include statements
that are necessary if certain calls are present in the code. Refer to “Linkage
editor control statements for modules that contain calls to COBOL routines” on
page 34 for the specific control statements that are necessary for different kinds
of ILCs with COBOL.

v For modules that have a C main() procedure:
1. Replace the C/370 program by recompiling the source (if available).

//Jobcard information
//*
//**//
//*RELINK C/370 V2 USER MODULE FOR Language Environment *//
//**//
//*
//*
//LINK EXEC PGM=HEWL,PARM=’RMODE=ANY,AMODE=31,MAP,LIST’
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLMOD DD DSN=TSUSER1.A.LOAD,DISP=SHR
//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(10,10))
//SYSLIN DD *

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@CTEST) NEEDED ONLY IF CTEST CALLS ARE PRESENT
INCLUDE SYSLIB(@@C2CBL) NEEDED ONLY IF CALLS ARE MADE TO COBOL
INCLUDE SYSLIB(@@CBL2C) NEEDED ONLY IF CALLS ARE MADE FROM COBOL
INCLUDE SYSLMOD(HELLO)
ENTRY CEESTART
NAME HELLO(R)

/*

Figure 8. Link job for converting programs

36 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

2. Recompile the source containing the main() procedure with the z/OS V2R2
XL C/C++ compiler.

3. Relink the objects with Language Environment services.

Note: This ensures that CEESTART uses the Language Environment
initialization scheme. This is an alternative to including EDCSTART explicitly
when linking from objects.

Chapter 6. Bind-time migration issues with pre-OS/390 C/C++ programs 37

38 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 7. Runtime migration issues with pre-OS/390 C/C++
applications

When you use IBM z/OS V2R2 XL C/C++ to run applications that were most
recently executed prior to IBM OS/390 C/C++ compilers, be aware of the
following migration issues:
v “Retention of pre-OS/390 runtime behavior”
v “Runtime library messages”
v “Changes that affect customized JCL procedures” on page 41
v “Changes in runtime option specification” on page 41
v “Runtime library compatibility issues with pre-OS/390 applications” on page 43
v “Hardware and OS exceptions” on page 46
v “Resource allocation and memory management migration issues” on page 47

Retention of pre-OS/390 runtime behavior
When your program is using Language Environment services, you can use the
ENVAR runtime option to specify the values of environment variables at execution
time. You can use some environment variables to specify the original runtime
behavior for particular items. The following setting specifies the original runtime
behavior for the greatest number of items:
ENVAR("_EDC_COMPAT=32767")

Alternatively, you can add a call to the setenv() function, either in the CEEBINT
High-Level Language exit routine or in your main() program. If you use CEEBINT
only, you will need to relink your application. If you add a call to setenv() in the
main() function, you must recompile the program and then relink your application.
For more information, refer to setenv() in z/OS XL C/C++ Runtime Library
Reference, SC14-7314 and to Using environment variables in z/OS XL C/C++
Programming Guide.

Runtime library messages
There are differences between pre-OS/390 and Language Environment runtime
messages. Some messages have been added and some have been deleted; the
contents of others have been changed. Any application that is affected by the
format or contents of these messages must be updated accordingly.

Note: Well-formed code should not depend on message contents or message
numbers.

Refer to z/OS Language Environment Debugging Guide for details on runtime
messages and return codes.

Return codes and messages
Since C/370 V2, library return codes and messages have been changed. Either JCL,
CLISTs and EXECs that are affected by them must be changed accordingly or the
CEEBXITA exit routine must be customized to emulate the old return codes. C/370

© Copyright IBM Corp. 2015 39

V2 return codes ranged from 0 to 999 but the Language Environment return codes
have a different range. Refer to z/OS XL C/C++ Messages, GC14-7305 for more
information.

Examples: See the following examples.
v Return codes greater than 4095 are returned as modulo 4095 return codes.
v The return code for an abort is now 2000; it was 1000.
v The return code for an unhandled SIGFPE, SIGILL, or SIGSEGV condition is now

3000; it was 2000.

For detailed information, refer to z/OS Language Environment Debugging Guide.

Error conditions that cause runtime messages
In C/370 V2, if an error was detected with the parameters being passed to the
main program, the program terminated with a return code of 8 and a message
indicating the reason why the program was not run. For example, if there was an
error in the redirection parameters, the message would indicate that the program
had terminated because of a redirection error.

Under z/OS V2R2 XL C/C++ compiler, the same message will be displayed, but
the program will also terminate with a 4093 abend, reason code 52 (x'34'). For more
information about reason codes see z/OS Language Environment Debugging Guide.

Prefixes of perror() and strerror() messages
All Language Environment perror() and strerror() messages in C contain a
prefix. (In C/370 V2, there were no prefixes to these messages.) The prefix is
EDCxxxxa, where xxxx is a number (always 5xxx) and the a is either I, E, or S. See
z/OS Language Environment Runtime Messages for a list of these messages.

Language specification for messages
Instead of specifying a messages data set for the SYSMSGS ddname, you must
now use the NATLANG runtime option. If you specify a data set for the SYSMSGS
ddname, it will be ignored.

Note: For information about the NATLANG runtime option, see z/OS Language
Environment Customization and the z/OS Language Environment Programming
Reference.

User-developed exit routines
With Language Environment services in a batch environment, abnormal
termination exit routine CEEBDATX is automatically linked at installation time.

This change affects you if you have supplied, or need to supply, your own exit
routine. The sample exit routine had been available in the sample library provided
with IBM AD/Cycle LE/370 V1R3. It automatically generates a system dump (with
abend code 4039) whenever an abnormal termination occurs.

You can trigger the dump by ensuring that SYSUDUMP is defined in the GO step
of the JCL that you are using (for example, by including the statement SYSUDUMP
DD SYSOUT=*).

Note: As of C/C++ for MVS/ESA V3R2, the standard JCL procedures shipped
with the compiler do not include SYSUDUMP.

40 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

If SYSUDUMP is not included in your JCL, or is defined as DUMMY, the dump
will be suppressed.

Changes that affect customized JCL procedures
This topic describes changes that may affect your JCL procedures, CLISTs and
EXECs.

Changes in data set names
The names of IBM-supplied data sets may change from one release to another. see
z/OS Program Directory for more information on data set names.

Arguments that contain a slash
You must prefix the arguments with a slash if you use Language Environment
services and:
v There are no runtime options.
v The input arguments passed to main() contain a slash.

JCL, CLISTs, and EXECs that are affected must be changed accordingly.

Differences in standard streams
There is no automatic association of Language Environment ddnames SYSTERM,
SYSERR, SYSPRINT with the stderr function. In batch processes, you must use
command line redirection of the type 1>&2 if you want stderr and stdout to share
a device.

In C/370 V2, you could override the destination of error messages by redirecting
stderr. The destination of all Language Environment messages is determined by
the MSGFILE runtime option. See the topic on the MSGFILE runtime option in the
z/OS Language Environment Programming Guide for more information.

Dump generation
You can generate a dump by ensuring that SYSUDUMP is defined in the GO step
of the JCL that you are using (for example, by including the statement SYSUDUMP
DD SYSOUT=*). If SYSUDUMP is not included in your JCL, or is defined as
DUMMY, the dump will be suppressed. As of C/C++ for MVS/ESA V3 compiler,
the standard JCL procedures shipped with the compiler do not include
SYSUDUMP.

Changes in runtime option specification
This topic describes changes that might affect your specification of runtime
options. For information about using pragmas in your source code to specify
runtime options, see “The #pragma runopts directive” on page 17.

Runtime options lists
When passing only runtime options to a C/370 V2 program, you did not have to
end the arguments with a slash (/). When passing runtime options to a Language
Environment program, you must end the arguments with a slash.

Obsolete runtime options
The C/370 runtime options are mapped to Language Environment equivalents.
However, if you do not use the Language Environment options, during execution

Chapter 7. Runtime migration issues with pre-OS/390 C/C++ applications 41

you will get a warning message which cannot be suppressed. JCL, CLISTs and
EXECs that are affected by these differences must be changed accordingly.

Use the Language Environment equivalent for the C/370 V2 runtime options on
the command line and in #pragma runopts.

ISASIZE/ISAINC becomes STACK
LANGUAGE becomes NATLANG
REPORT becomes RPTSTG
SPIE/STAE becomes TRAP
NONIPTSTACK|NONONIPTSTACK becomes XPLINK

Return codes for abnormal enclave terminations
As of OS/390 V2R9, the default option for ABTERMENC is ABEND instead of
RETCODE. If your program depends on the default behavior of ABTERMENC to
be RETCODE, you must change the setting in CEEDOPT (CEECOPT for CICS). For
details about changing CEEDOPT and CEECOPT, refer to z/OS Language
Environment Customization, SA38-0685.

Abnormal terminations and the TRAP runtime option
STAE and SPIE runtime options have been replaced with the TRAP runtime
option. IBM recommends that you use the TRAP(ON,SPIE) option, not STAE and
SPIE. However, for ease of migration, the STAE and SPIE options are supported as
long as the TRAP option is not explicitly specified.

TRAP(ON) must be in effect for the ABTERMENC runtime option to have effect.
For more information, refer to ABTERMENC and TRAP in z/OS Language
Environment Programming Reference.

Default heap allocations
The default size and increment for Language Environment HEAP runtime option
differ from those of the C/370 V2 HEAP runtime option. The C/370 V2 defaults
were 4K size and 4K increment.

The Language Environment defaults are:
v For CICS applications: HEAP(32K,32K,ANYWHERE,KEEP,8K,4K)
v For non-CICS applications: HEAP(4K,4080,ANYWHERE,KEEP,4K,4080)

The amount of heap storage allocated and incremented below the 16M line is
determined by the following Language Environment parameters:
v initsz24.
v incrsz24.

For information about these parameters, see z/OS Language Environment
Programming Reference.

HEAP parameter specification
In IBM C/370 V2, only the first two of the four parameters for the HEAP option
were positional. The keyword parameters could be specified if the first two were
omitted. All Language Environment parameters are positional. To specify the KEEP
parameter only, you must enter HEAP(,,,KEEP).

42 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Default stack allocations
The Language Environment STACK option defaults for size and increment differ
from the defaults in C/370 V2, which were 0K size and 0K increment.

Language Environment STACK option defaults are:
v For non-CICS, non-XPLINK applications:

STACK(128K,128K,ANYWHERE,KEEP,512K,128K)
v For non-CICS, XPLINK applications:

STACK(512K,128K,ANYWHERE,KEEP,512K,128K)
v For CICS, non-XPLINK applications:

STACK(4K,4080,ANYWHERE,KEEP,4K,4080)
v For CICS, XPLINK applications: STACK(4K,4080,ANYWHERE,KEEP,4K,4080)

STACK parameter specification
All Language Environment STACK parameters are positional. In other words, the
keyword parameter could be specified if the first two were omitted. To specify
only ANYWHERE you must enter: STACK(,,ANYWHERE).

Note: In C/370 V2 , only the first two parameters were positional.

XPLINK downward-growing stack and the THREADSTACK
runtime option

In OS/390 V2R10, the THREADSTACK runtime option replaced the
NONIPTSTACK and NONONIPTSTACK options. The OS/390 V2R10 options are
still accepted, but an information message will be issued, telling you to switch to
the THREADSTACK option.

Be aware that the OS/390 V2R10 options do not support specification of the initial
and increment sizes of the XPLINK downward-growing stack. For more
information about the THREADSTACK runtime option, refer to z/OS Language
Environment Customization, SA38-0685.

Runtime library compatibility issues with pre-OS/390 applications
Changes in runtime libraries might cause problems when you run pre-OS/390
C/C++ applications. Be aware of the following issues:
v “Changes to the putenv() function and POSIX compliance”
v “UCMAPS and UCS-2 and UTF-8 converters” on page 44
v “Common library initialization compatibility issues with C/370 modules” on

page 44
v “Internationalization issues in POSIX and non-POSIX applications” on page 45

Changes to the putenv() function and POSIX compliance
As of z/OS V1R5 C/C++, the function putenv() places the string passed to
putenv() directly into the array of environment variables. This behavior assures
compliance with the POSIX standard.

Prior to z/OS V1R5 C/C++, the string used to define the environment variable
passed into putenv() was not added to the array of environment variables. Instead,
the system copied the string into system-allocated storage.

Chapter 7. Runtime migration issues with pre-OS/390 C/C++ applications 43

To allow the POSIX-compliant behavior of putenv(), do nothing; it’s now the
default condition.

To restore the previous behavior of putenv(), follow these steps:
1. Ensure that the environment variable, _EDC_PUTENV_COPY, is available on

your pre-z/OS V1R5 system.
2. Set the environment variable _EDC_PUTENV_COPY to "YES".

For additional information, see:
v z/OS XL C/C++ Runtime Library Reference

v _EDC_PUTENV_COPY in z/OS XL C/C++ Programming Guide

UCMAPS and UCS-2 and UTF-8 converters
As of OS/390 V2R9, the compiler supported direct use of the UCS-2 and UTF-8
converters; the tables generated by the processing of UCMAPS by the uconvdef
utility are no longer used. This is a migration issue if you modified UCMAPS to
use the UCS-2 and UTF-8 converters. If you still need to use the modifications that
you made to UCMAPS, you will now need to set the _ICONV_UCS2 environment
variable to "O". For more information about the _ICONV_UCS2 environment
variable, refer to z/OS XL C/C++ Programming Guide, SC14-7315.

Common library initialization compatibility issues with C/370
modules

Both Language Environment modules and C/370 modules use static code and
dynamic code. Static code sections are emitted or bound with the main program
object. Dynamic code sections are loaded and executed by the static component.

The sequence of events during initialization for C/370 modules differs from that
for Language Environment modules. The key static code for the CEESTART object
controls initialization at execution time. The C/370 CEESTART object contents
differ from those of the Language Environment CEESTART object Its contents
differ between the products. The Language Environment key dynamic code for the
CEESTART object is CEEBINIT, which is stored in SCEERUN. The C/370 R2 key
dynamic code for the CEESTART object is IBMBLIIA, which is a Common Library
part stored in SIBMLINK. The Common Library is used by the C/370 V2 libraries.

Initialization schemes
The tables in this topic describe the initialization schemes for the CEESTART and
IBMBLIIA modules:
v Table 7 describes the initialization scheme for C/370 V2 modules.
v Table 8 on page 45 describes the initialization scheme for Language Environment

modules.
v Table 9 on page 45 describes the Language Environment initialization scheme for

C/370 programs.

The following describes the C/370 V2 initialization scheme:

Table 7. C/370 V2 initialization scheme

Stage Description

Load The C/370 V2 CEESTART loads IBMBLIIA.

Initialize IBMBLIIA initializes the Common Library.

Run The Common Library runs C/370-specific initialization.

44 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Table 7. C/370 V2 initialization scheme (continued)

Stage Description

Call The main program is called.

The following describes the initialization scheme:

Table 8. Language Environment initialization scheme

Stage Description

Load CEESTART loads CEEBINIT.

Initialize CEEBINIT initializes Language Environment services.

Run The Language Environment runtime library runs the C-specific
initialization.

Call The main program is called.

Table 9. Language Environment initialization scheme for C/370 programs

Stage Description

Load C/370 V2 CEESTART loads CEEBLIIA (as IBMBLIIA).

Initialize CEEBLIIA (IBMBLIIA) initializes Language Environment services.

Run The Language Environment runtime library runs the C-specific
initialization.

Call The main program is called.

In Table 9, compatibility with C/370 V2 programs depends upon the program's
ability to intercept the initialization sequence at the start of the dynamic code and
to initialize the Language Environment services at that point. This interception is
achieved by the addition of a part named CEEBLIIA, which has been assigned the
alias IBMBLIIA. This provides “initialization compatibility”.

Special considerations: CEEBLIIA and IBMBLIIA
The only way to control which environment is initialized for a given C/370 V2
program (when CEEBLIIA is assigned the alias of IBMBLIIA) is to correctly
arrange the concatenation of libraries.

The version of IBMBLIIA that is found first determines the services (Language
Environment or Common Library) that are initialized.
v If you intend to initialize the Common Library services, ensure that SIBMLINK

is concatenated before SCEERUN.
v If you intend to initialize the Language Environment services, ensure that

SCEERUN is concatenated before SIBMLINK.

Internationalization issues in POSIX and non-POSIX
applications

You should customize your locale information. Otherwise, in rare cases, you may
encounter errors. In a POSIX application, you can supply time zone and alternative
time (for example, daylight) information with the TZ environment variable. In a
non-POSIX application, you can supply this information with the _TZ environment
variable. If no _TZ environment variable is defined for a POSIX application or no
_TZ environment variable is defined for a non-POSIX application, any customized
information provided by the LC_TOD locale category is used. By setting the TZ

Chapter 7. Runtime migration issues with pre-OS/390 C/C++ applications 45

environment variable for a POSIX application, or the _TZ environment variable for
a non-POSIX application, or by providing customized time zone or daylight
information in an LC_TOD locale category, you allow the time functions to
preserve both time and date, correctly adjusting for alternative time on a given
date.

Refer to z/OS XL C/C++ Programming Guide for more information about both
environment variables and customizing a locale.

Hardware and OS exceptions
The following points identify migration and coexistence considerations for user
applications:
v CICS programs that use Language Environment services are enabled for decimal

overflow exceptions.
v The C packed-decimal support routines are not supported in an environment

that exploits asynchronous events.

Decimal overflow exceptions
Language Environment services support the packed decimal overflow exception
using IBM System zArchitecture systems.

The value of the program mask in the program status word (PSW) is 4 (decimal
overflow enabled). See “Unexpected SIGFPE exceptions” and “Explicit program
mask manipulations” on page 20.

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions
SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions are handled differently for C/370
V2 and Language Environment programs.

The differences or incompatibilities are:
v The defaults for the SIGINT, SIGTERM, SIGUSR1, and SIGUSR2 signals changed

in AD/Cycle LE/370 V1R3 from what they were in C/370 V1 and V2 and
AD/Cycle LE/370 V1R1 and V2R2. These changes were carried into the
Language Environment runtime environment. In the C/370 library and
AD/Cycle LE/370 V1R1 and V1R2, the defaults for SIGINT, SIGUSR1, and
SIGUSR2 were to ignore the signals. As of AD/Cycle LE/370 V1R3, the defaults
are to terminate the program and issue a return code of 3000. For SIGTERM, the
default has always been to terminate the program. The return code is "3000";
before, it was "0".

v Language Environment programs that terminate abnormally will not drive the
atexit list.

Unexpected SIGFPE exceptions
Decimal overflow conditions were masked in the C/370 library prior to V2R2.
Diagnosis of overflow conditions were enabled when the packed decimal data type
was introduced prior to C/370 V2R2.

As of z/OS V1R7 XL C/C++ compiler, load modules that had generated decimal
overflow conditions might raise unexpected SIGFPE exceptions. You cannot
migrate such modules to the current without altering the source.

46 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Note: These unexpected exceptions are most likely to occur in mixed language
modules, particularly those using C and assembler code where the assembler code
explicitly manipulates the program mask. See “Explicit program mask
manipulations” on page 20.

Resource allocation and memory management migration issues
Incompatibilities in memory management might cause unexpected results in the
output of your program. In your source code, you should be aware of potential
problems when you use any operators or structures that re-allocate resources
during application execution.

The realloc() function
If Language Environment services are initialized when the realloc() function is
used, a new storage area is obtained and the data is copied. Under C/370 V2, the
realloc() function will reuse an area unless the function needs a larger area.

If your program uses Language Environment services, ensure that the source code
does not depend on the C/370 V2 behavior of the realloc() function.

Chapter 7. Runtime migration issues with pre-OS/390 C/C++ applications 47

48 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 8. Input and output operations compatibility

Language Environment V1R5 input and output support differs from that provided
by pre-OS/390 libraries. If your programs last performed input and output
operations with a pre-OS/390 C/C++ compiler, you should read the changes listed
herein.

Note: In this information, references to "previous releases" or "previous behavior"
apply either to pre-OS/390 compilers or to a runtime environment that precedes
the Language Environment V1R5 release.

You will generally be able to migrate “well-behaved” programs: programs that do
not rely on undocumented behavior, restrictions, or invalid behaviors of previous
releases. For example, if library documentation specified only that a return code
was a negative value, and your code relies on that value being "-3", your code is
not well-behaved and is relying on undocumented behavior.

Another example of a program that is not well-behaved is one that specifies
recfm=F for a terminal file and depends on the runtime environment to ignore this
parameter, as it did previously.

You might need to change even well-behaved code under circumstances described
in the following topics.

Migration issues when opening pre-OS/390 files
When you call the fopen() or freopen() library function, you can specify each
parameter only once. If you specify any keyword parameter in the mode string
more than once, the function call fails. Previously, you could specify more than one
instance of a parameter.

The library no longer supports uppercase open modes on calls to fopen() or
freopen(). You must specify, for example, rb instead of RB, to conform to the
ANSI/ISO standard.

You cannot open a non-HFS file more than once for a write operation. Previous
releases allowed you, in some cases, to open a file for write more than once. For
example, you could open a file by its data set name and then again by its ddname.
This is no longer possible for non-HFS files, and is not supported.

Previously, fopen() allowed spaces and commas as delimiters for mode string
parameters. Only commas are allowed now.

If you are using PDSs or PDSEs, you cannot specify any spaces before the member
name.

Migration issues when writing to pre-OS/390 files
Write operations to files opened in binary mode are no longer deferred. Previously,
the library did not write a block that held nn bytes out to the system until the user
wrote nn+1 bytes to the block. Language Environment services follow the rules for
full buffering, described in z/OS XL C/C++ Programming Guide, and write data as

© Copyright IBM Corp. 2015 49

soon as the block is full. The nn bytes are still written to the file, the only
difference is in the timing of when it is done.

For non-terminal files, the backspace character (’\b’) is now placed into files as is.
Previously, it backed up the file position to the beginning of the line.

For all text I/O, truncation for fwrite() is now handled the same way that it is
handled for puts() and fputs(). If you write more data than a record can hold,
and your output data contains any of the terminating control characters, ’\n’ or
’\r’ (or ’\f’, if you are using ASA), the library still truncates extra data; however,
recognizing that the text line is complete, the library writes subsequent data to the
next record boundary. Previously, fwrite() stopped immediately after the library
began truncating data, so that you had to add a control character before writing
any more data.

You can now partially update a record in a file opened with type=record. Previous
services returned an error if you tried to make a partial update to a record. Now, a
record is updated up to the number of characters you specify, and the remaining
characters are untouched. The next update is to the next record.

Language Environment services block files more efficiently than some previous
services did. Applications that depend on the creation of short blocks may fail.

The behavior of ASA files when you close them has changed. In previous releases,
this is what happened:

Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n\n

abc\n\n abc\n\n\n

abc\n abc\n

Starting with this release, you read from the file what you wrote to it. For example:

Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n

abc\n\n abc\n\n

abc\n abc\n

With previous services, writing a single new-line character to a new file created an
empty file under MVS™. Language Environment services treat a single new-line
character written to a new file as a special case, because it is the last new-line
character of the file. A single blank is written to the file. When this file is read,
there are two new-line characters instead of one. There are also two new-line
characters if two new-line characters were written to the file.

The behavior of appending to ASA files has also changed. The following table
shows what you get from an ASA file when you:
1. Open an ASA file for write.
2. Write abc.
3. Close the file.
4. Append xyz to the ASA file.
5. Open the same ASA file for read.

50 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Table 10. Appending to ASA files

abc Written to file, fclose()
then append xyz

What you read from file after fclose(), fopen()

Previous release New release

abc ==> xyz \nabc\nxyz\n same as previous release

abc ==> \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc ==> \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n ==> xyz \nabc\nxyz\n same as previous release

abc\n ==> \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc\n ==> \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n\n ==> xyz \nabc\n\n\nxyz\n \nabc\n\nxyz\n

abc\n\n ==> \nxyz \nabc\n\n\nxyz\n same as previous release

abc\n\n ==> \rxyz \nabc\n\n\rxyz\n same as previous release

Changes in DBCS string behavior
I/O now checks the value of MB_CUR_MAX to determine whether to interpret
DBCS characters within a file.

When MB_CUR_MAX is 4, you can no longer place control characters in the
middle of output DBCS strings for interpretation. Control characters within DBCS
strings are treated as DBCS data. This is true for terminals as well. Previous
products split the DBCS string at the ’\n’ (new-line) control character position by
adding an SI (Shift In) control character at the new-line position, displaying the
line on the terminal, and then adding an SO (Shift Out) control character before the
data following the new-line character. If MB_CUR_MAX is 1, the library interprets
control characters within any string, but does not interpret DBCS strings. SO and
SI characters are treated as ordinary characters.

When you are writing DBCS data to text files, if there are multiple SO (Shift Out)
control-character write operations with no intervening SI (Shift In) control
character, the library discards the SO characters, and marks that a truncation error
has occurred. Previous products allowed multiple SO control-character write
operations with no intervening SI control character without issuing an error
condition.

When you are writing DBCS data to text files and specify an odd number of DBCS
bytes before an SI control character, the last DBCS character is padded with a X'FE'
byte. If a SIGIOERR handler exists, it is triggered. Previous products allowed
incorrectly placed SI control-character write operations to complete without any
indication of an error.

Now, when an SO has been issued to indicate the beginning of a DBCS string
within a text file, the DBCS must terminate within the record. The record will have
both an SO and an SI.

Changes in stdout and stderr file positioning
The Language Environment inheritance model for standard streams supports
repositioning. Previously, if you opened stdout or stderr in update mode, and
then called another C program by using the ANSI-style system() function, the
program that you called inherited the standard streams, but moved the file

Chapter 8. Input and output operations compatibility 51

position for stdout or stderr to the end of the file. Now, the library does not move
the file position to the end of the file. For text files, the position is moved only to
the nearest record boundary not before the current position. This is consistent with
the way stdin behaves for text files.

The values for L_tmpnam and FILENAME_MAX have been changed:

Constant Old values New values

L_tmpnam 47 1024

FILENAME_MAX 57 1024

The names produced by the tmpnam() library function are now different. Any code
that depends on the internal structure of these names may fail.

The behavior of fgetpos(), fseek() and fflush() following a call to ungetc() has
changed. Previously, these functions have all ignored characters pushed back by
ungetc() and have considered the file to be at the position where the first ungetc()
character was pushed back. Also, ftell() acknowledged characters pushed back
by ungetc() by backing up one position if there was a character pushed back.
Now:
v fgetpos() behaves just as ftell()does.
v When a seek from the current position (SEEK_CUR) is performed, fseek()

accounts for any ungetc() character before moving, using the user-supplied
offset.

v fflush() moves the position back one character for every character that was
pushed back.

If you have applications that depend on the previous behavior of fgetpos(),
fseek(), or fflush(), you may use the _EDC_COMPAT environment variable so
that source code need not change to compensate for the change in behavior.

For OS I/O to and from files opened in text mode, the ftell() encoding system
now supports higher blocking factors for smaller block sizes. In general, you
should not rely on ftell() values generated by code you developed using
previous releases of the library. You can try ftell() values taken in previous
releases for files opened in text or binary format if you set the environment
variable _EDC_COMPAT before you call fopen() or freopen(). Do not rely on
ftell() values saved across program boundaries.

For record I/O, ftell() now returns the relative record number instead of an
encoded offset from the beginning of the file. You can supply the relative record
number without acquiring it from ftell(). You cannot use old ftell() values for
record I/O, regardless of the setting of _EDC_COMPAT.

After you have called ftell(), calls to setbuf() or setvbuf() might fail.
Applications should never call I/O functions between calls to fopen() or freopen()
and calls to the functions that control buffering.

Note: _EDC_COMPAT is described in z/OS XL C/C++ Programming Guide.

52 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Behavior changes when closing and reopening ASA files
The behavior of ASA files when you close and reopen them is now consistent: For
more information about using ASA files, refer to z/OS XL C/C++ Programming
Guide.

Table 11. Closing and reopening ASA files

Written to file

Physical record after close

Previous behavior New behavior

abc Char abc (1) same as previous release

Hex 4888
0123

(1)

abc\n Char abc (1) same as previous release

Hex 4888
0123

(1)

abc\n\n Char abc
0 (1)

(2)

Char abc
(1)
(2)

Hex 4888
0123
F
0

(1)

(2)

Hex 4888
0123
4
0

(1)

(2)

abc\n\n\n Char abc
- (1)

(2)

Char abc
(1)
(2)

Hex 4888
0123
6
0

(1)

(2)

Hex 4888
0123
4
0

(1)
(2)

abc\r Char abc
+ (1)

(2)

same as previous release

Hex 4888
0123
4
E

(1)

(2)

abc\f Char abc
1 (1)

(2)

same as previous release

Hex 4888
0123
F
1

(1)

(2)

Changes in values returned by the fldata() function
There are minor changes to the values returned by the fldata() library function. It
may now return more specific information in some fields. For more information,
refer to "fldata() behavior", in z/OS XL C/C++ Programming Guide.

Chapter 8. Input and output operations compatibility 53

VSAM I/O changes
v The library no longer appends an index key when you read from an RRDS file

opened in text or binary mode.
v RRDS files opened in text or binary mode no longer support setting the access

direction to BWD.

Change in allocation of VSAM control blocks and I/O buffers
As of z/OS V1R10, the XL C/C++ compiler instructs VSAM, by default, to allocate
control blocks and I/O buffers above the 16-MB line.

If you determine that this change could be causing a problem, you can use the
VSAM JCL parameter AMP to override the default.

Terminal I/O changes
The library will now use the actual recfm and lrecl specified in the fopen() or
freopen() call that opens a terminal file. Incomplete new records in fixed binary
and record files are padded with blank characters until they are full, and the
__recfmF flag is set in the fldata() structure. Previously, MVS terminals
unconditionally set recfm=U. Terminal I/O did not support opening files in fixed
format.

The use of an LRECL value in the fopen() or freopen() call that opens a file sets
the record length to the value specified. Previous releases unconditionally set the
record length to the default values.

For input text terminals, an input record now has an implicit logical record
boundary at LRECL if the size of the record exceeds LRECL. The character data in
excess of LRECL is discarded, and a ’\n’ (new-line) character is added at the end
of the record boundary. You can now explicitly set the record length of a file as a
parameter on the fopen() call. The old behavior was to allow input text records to
span multiple LRECL blocks.

Binary and record input terminals now flag an end-of-file condition with an empty
input record. You can clear the EOF condition by using the rewind() or clearerr()
library function. Previous products did not allow these terminal types to signal an
end-of-file condition. The use of a RECFM value in the fopen() or freopen() call
that opens a file sets the record format to the value specified. Previous releases
unconditionally set the record format to the default values.

When an input terminal requires input from the system, all output terminals with
unwritten data are flushed in a way that groups the data from the different open
terminals together, each separated from the other with a single blank character. The
old behavior is equivalent to the new behavior, except that two blank characters
separate the data from each output terminal.

54 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 3. Migration of OS/390 C/C++ applications to z/OS V2R2
XL C/C++

OS/390 C/C++ applications were created with one of the following products:
v IBM OS/390 V1R1 C/C++ (reship of IBM C/C++ for MVS/ESA V3R2)
v IBM OS/390 V1R2 or V1R3 C/C++
v IBM OS/390 V2R4, V2R5, V2R6, V2R7, V2R8, V2R9, or V2R10 C/C++
v IBM z/OS V1R1 C/C++ (reship of IBM OS/390 V2R10 C/C++)

Notes:

1. The z/OS V1R1 compiler and library are equivalent to the OS/390 V2R10
compiler and library.

2. The OS/390 V2R5 compiler is equivalent to the OS/390 V2R4 compiler.
3. The OS/390 V1R1 compiler and library are equivalent to the final MVS/ESA

compiler and library, and are described in Part 2, “Migration of pre-OS/390
C/C++ applications to z/OS V2R2 XL C/C++,” on page 15.

Generally, you can bind OS/390 programs successfully with z/OS V2R2 programs
without changing source code, and without recompiling or relinking programs.

The following topics provide information relevant to migrating a OS/390
application to z/OS V2R2 XL C/C++:
v Chapter 9, “Source code compatibility issues with OS/390 programs,” on page

57
v Chapter 10, “Compile-time migration issues with OS/390 programs,” on page 59
v Chapter 11, “Bind-time migration issues with OS/390 C/C++ programs,” on

page 71
v Chapter 12, “Runtime migration issues with OS/390 C/C++ applications,” on

page 73
v Chapter 13, “Migration issues resulting from class library changes between

OS/390 C/C++ applications and Standard C++ library,” on page 75

Notes:

1.

If your application uses IBM CICS information or statements, also see
Chapter 20, “Migration issues with earlier C/C++ applications that run CICS
statements,” on page 133.

2.

If your application uses IBM DB2 information or statements, also see
Chapter 21, “Migration issues with earlier C/C++ applications that use DB2,”
on page 139.

© Copyright IBM Corp. 2015 55

56 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 9. Source code compatibility issues with OS/390
programs

In general, you can use source programs with the z/OS V2R2 XL C/C++ compiler
without modification, if they were created with an OS/390 compiler and library.

For details on support of Programming languages - C++ (ISO/IEC 14882:2003(E)), see
Part 5, “ISO Standard C++ compliance migration issues,” on page 115.

Note: Some source code compatibility issues can be addressed by modifying
runtime options. See Chapter 12, “Runtime migration issues with OS/390 C/C++
applications,” on page 73.

Overflow processing and code modifications
When a data type conversion causes an overflow (that is, the floating type value is
larger than INT_MAX), the behavior is undefined according to the C Standard. The
actual result depends on the ARCHITECTURE level (the ARCH option), which
determines the machine instruction used to do the conversion. For example, there
are input values that would result in a large negative value for ARCH(2) and
below, while the same input would result in a large positive value for ARCH(3)
and above.

If overflow processing is important to the program, the code should provide
explicit checks.

Table 12. Modifying code to check overflow processing

Example of code that does not check overflow
processing

Example of code that is modified to check overflow
processing

double x;
int i;
/* ... */

i = x; /* overflow if x is too large */
/* value of i undefined */

double x;
int i;
if (x < (double) INT_MAX)

i = x;
else {

/* overflow */
}

.

References to class libraries that are no longer shipped
As of z/OS V1R9, IBM Open Class Library (IOC) dynamic link libraries (DLLs) are
no longer shipped with the z/OS XL C/C++ compiler.

Any source dependency on an IOC DLL must be removed.

For information about the libraries that are supported by the current release, see
z/OS XL C/C++ Runtime Library Reference.

© Copyright IBM Corp. 2015 57

58 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 10. Compile-time migration issues with OS/390
programs

When you compile programs that were previously compiled with an OS/390
compiler and library, be aware of the following migration issues:
v “Changes in compiler listings and messages”
v “Changes in compiler options” on page 60
v “Changes in IBM data set names” on page 67
v “Introduction of 1998 Standard C++ support” on page 68
v “Changes that affect performance and optimization” on page 68
v “Removal of Model Tool support” on page 69

Changes in compiler listings and messages
From release to release, message contents can change and, for some messages,
return codes can change. Errors can become warnings, and warnings can become
errors. You must update any application that is affected by changes in message
contents or return codes. Do not build dependencies on message contents, message
numbers, or return codes. See z/OS XL C/C++ Messages for a list of compiler
messages.

Listing formats, especially the pseudo-assembler parts, will continue to change
from release to release. Do not build dependencies on the structure or content of
listings. For information about C listings or the C++ listings for the current release,
refer to z/OS XL C/C++ User's Guide, SC14-7307.

Debug format specification
As of z/OS V1R6 C/C++, the environment variable _DEBUG_FORMAT can be
used with the c89 utility to specify translation of the -g flag option for 31-bit
compilations:
v If _DEBUG_FORMAT equals DWARF (the default), -g is translated to

DEBUG(FORMAT(DWARF)).
v If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old

translation).

For the impact on the runtime environment, see “Debug format and translation of
the c89 -g flag option” on page 74.

For more information about using the c89 utility, see the c89 utility information in
z/OS XL C/C++ User's Guide.

Language specification for compiler messages
With the C/C++ for MVS/ESA V3R2, OS/390, and z/OS XL C/C++ compilers, the
method of specifying the language for compiler messages has changed. At compile
time, instead of specifying message data sets on the SYSMSGS and SYSXMSGS
ddnames, you must now use the NATLANG runtime option. If you specify data
sets for these ddnames, they are ignored.

© Copyright IBM Corp. 2015 59

Note: For information about the NATLANG runtime option, see z/OS Language
Environment Customization and the z/OS Language Environment Programming
Reference.

Optimization level mapping and listing content
As of OS/390 V2R6 C/C++ compiler, OPT, OPT(1), and OPT(2) map to OPT(2).
The compiler listing no longer contains the part of the pseudo-assembler listing
that was associated with OPT(1). Listing formats, especially the pseudo-assembler
parts, will continue to change from release to release. Do not build dependencies
on the structure or content of listings. For information about C listings or C++
listings for the current release, refer to z/OS XL C/C++ User's Guide.

Macro redefinitions and error messages
As of z/OS V1R7 XL C, the behavior of macro redefinition has changed. For
certain language levels, the XL C compiler will issue a severe error message
instead of a warning message when a macro is redefined to a value that is
different from the first definition.

For information about the language levels that are affected, see “LANGLVL(ANSI),
LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions”
on page 64 and “LANGLVL(EXTENDED) compiler option and macro
redefinitions” on page 64.

Changes in compiler options
As the compiler is developed, some options are no longer supported and others
undergo functional changes, such as adjustments in the default values.

Compiler options that are no longer supported
As of z/OS V1R2 C/C++ compiler, the following compiler options are no longer
supported:
v DECK

The replacement for DECK functionality that routes output to DD:SYSPUNCH is
to use OBJECT(DD:SYSPUNCH).

v GENPCH
v HWOPTS

The replacement for HWOPTS is ARCHITECTURE.
v LANGLVL(COMPAT)
v OMVS

The replacement for OMVS is OE.
v SRCMSG
v SYSLIB

The replacement for SYSLIB is SEARCH.
v SYSPATH

The replacement for SYSPATH is SEARCH.
v USEPCH
v USERLIB

The replacement for USERLIB is LSEARCH.
v USERPATH

The replacement for USERPATH is LSEARCH.

60 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

As of OS/390 V2R10 C/C++ compiler, the following SOM-related compiler options
are no longer supported:
v SOM | NOSOM
v SOMEinit | NOSOMEinit
v SOMGs | NOSOMGs
v SOMRo | NOSOMRo
v SOMVolattr | NOSOMVolattr
v XSominc | NOXSominc

ARCHITECTURE compiler option
As of z/OS V2R2 XL C/C++ compiler, the default value of the ARCHITECTURE
compiler option is 8.

As of z/OS V2R1 XL C/C++ compiler, the default value of the ARCHITECTURE
compiler option is 7.

As of z/OS V1R6 C/C++ compiler, the default value of the ARCHITECTURE
compiler option is 5.

In OS/390 V2R10 to z/OS V1R5 releases, the default value of the ARCHITECTURE
compiler option is 2. In OS/390 V2R9 C/C++ and previous releases, the default
value of the ARCHITECTURE compiler option is 0.

ARCHITECTURE level and overflow processing
When a data conversion causes an overflow (for example, the floating type value is
larger than INT_MAX), the behavior is undefined according to the C Standard.

The actual result depends on the ARCHITECTURE level (the ARCH option), which
determines the machine instruction used to do the conversion. For example, there
are input values that would result in a large negative value for ARCH(2) and
below, while the same input would result in a large positive value for ARCH(3)
and above.

For more information, see “Overflow processing and code modifications” on page
57.

ARCHITECTURE level and Metal C file-scope header SYSSTATE
ARCHLVL statement
The SYSSTATE ARCHLVL statement in the Metal C file-scope header identifies the
minimum hardware requirement.

Starting from z/OS V2R1 XL C++ compiler, if and only if ARCH(7) or up and
OSREL(ZOSV2R1) or higher are in effect, SYSSTATE ARCHLVL=3; otherwise,
SYSSTATE ARCHLVL=2.

ARGPARSE compiler option with Metal
Starting from z/OS V1R13 XL C++ compiler, the ARGPARSE option is supported
with the METAL option. For more information, see ARGPARSE | NOARGPARSE
that is documented in z/OS XL C/C++ User's Guide.

ASCII compiler option
As of z/OS V1R10 XL C++ compiler, the Unicode characters that use \U or \u
notation are always sensitive to the ASCII compiler option. When the ASCII option

Chapter 10. Compile-time migration issues with OS/390 programs 61

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

is in effect, those characters are encoded in ASCII, even when they are found in
#pragma comment directives. Prior to z/OS V1R10 XL C++ compiler, all #pragma
comment text strings were encoded in EBCDIC.

CHECKOUT(CAST) compiler option
This suboption instructs the C compiler to check the source code for pointer
casting that might affect optimization (that is, for those castings that violate the
ANSI-aliasing rule). For detailed information, refer to information about the
ANSIALIAS option in z/OS XL C/C++ User's Guide.

Prior to z/OS V1R2 C/C++ compiler, the compiler issued a warning message
whenever this condition was detected. As of z/OS V1R2 C/C++ compiler, this
message is informational. If you want to be alerted by the compiler that this
message has been issued, you can use the HALTONMSG compiler option. The
HALTONMSG option causes the compiler to stop after source code analysis, skip
the code generation, and issue a return code of 12.

DIGRAPH compiler option
As of z/OS V1R2 C/C++ compiler, the DIGRAPH option default for C and C++
has been changed from NODIGRAPH to DIGRAPH.

ENUMSIZE compiler option
As of z/OS V1R7 XL C/C++, selected enumerated (enum) type declarations in
system header files are protected to avoid potential execution errors. This allows
you to specify the ENUMSIZE compiler option with a value other than SMALL
without risking incorrect mapping of enum data types (for example, if they were
used inside of a structure). For more information, see “ENUMSIZE(SMALL) and
protected enumeration types in system header files” on page 92.

z/OS V1R2 introduced the ENUMSIZE option as a means for controlling the size
of enumeration types. The default setting, ENUMSIZE(SMALL), provides the same
behavior that occurred in previous releases of the compiler.

If you want to continue to use the ENUMSIZE option, it is recommended that the
same setting be used for the whole application; otherwise, you might find
inconsistencies when the same enumeration type is declared in different
compilation units. Use the #pragma enum, if necessary, to control the size of
individual enumeration types (especially in common header files).

INFO compiler option
As of z/OS V1R2 C/C++, the INFO option default has been changed from
NOINFO to INFO(LAN) for C++.

As of z/OS V1R6 C/C++, the INFO option is supported by the C compiler as well
as the C++ compiler.

Note: The CHECKOUT C compiler option will continue to be supported for
compatibility with earlier releases only.

INLINE compiler option
For C++, the z/OS V1R1 and earlier compilers did not allow you to change the
inlining threshold. These compilers performed inlining at OPT with a fixed value
of 100 for the threshold and 2000 for the limit.

62 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

As of z/OS V1R2 C/C++ compiler, the C++ compiler accepts the INLINE option,
with defaults of 100 and 1000 for the threshold and limit, respectively. As a result
of this change, code that used to be inlined may no longer be inlined due to the
decrease in the limit from 2000 to 1000 ACUs (Abstract Code Units).

As of z/OS V1R11 XL C/C++ compiler, the INLINE option might behave
differently from those in the prior releases because of the implementation of a new
inliner. You might find different performances of the INLINE option in the
following ways:
v The functions that get inlined might be different.
v The inline report might look different.

If your application runs slower because functions that get inlined are different,
adjust your inlining settings at high optimization levels, for example, the inlining
threshold and the #pragma inline/noinline directives.

As of z/OS V2R1 XL C/C++ compiler, a virtual function might not be inlined even
when the function is specified with the always_inline attribute. No informational
message is issued when a virtual function is not inlined.

IPA(LINK) compiler option
For detailed information about using IPA Link step, refer to IPA(LINK) in z/OS XL
C/C++ User's Guide.

IPA Link step default changes
As of OS/390 V1R3 C/C++ compiler, the following IPA Link step defaults
changed:
v The default optimization level is OPT(1)
v The default is INLINE, unless NOOPT, OPT(0) or NOINLINE is specified.

As of OS/390 V2R6 C/C++ compiler:
v The default optimization level for the IPA Link step is OPT(2).
v The default inlining threshold is 1000 ACUs (Abstract Code Units). With OS/390

C/C++ V1R2 compiler, the threshold was 100 ACUs.
v The default expansion threshold is 8000 ACUs. With OS/390 C/C++ V1R2

C/C++ compiler, the threshold was 1000 ACUs.

The IPA(LINK) option and exploitation of 64-bit virtual memory
As of z/OS V1R12 XL C/C++, the compiler component that executes IPA at both
compile and link time is a 64-bit application, which will cause an XL C/C++
compiler ABEND if there is insufficient storage. The default MEMLIMIT system
parameter size in the SMFPRMxparmlib member should be at least 3000 MB for
the link, and 512 MB for the compile. The default MEMLIMIT value takes effect
whenever the job does not specify one of the following:
v MEMLIMIT in the JCL JOB or EXEC statement
v REGION=0 in the JCL

Notes:

v The compiler component that executes IPA(LINK) has been a 64-bit application
since z/OS V1R8 XL C/C++ compiler.

v The MEMLIMIT value specified in an IEFUSI exit routine overrides all other
MEMLIMIT settings.

Chapter 10. Compile-time migration issues with OS/390 programs 63

The UNIX System Services ulimit command that is provided with z/OS can be
used to set the MEMLIMIT default. For information, see z/OS UNIX System Services
Command Reference. For additional information about the MEMLIMIT system
parameter, see z/OS MVS Programming: Extended Addressability Guide.

As of z/OS V1R8 XL C/C++ compiler, the EDCI, EDCXI, EDCQI, CBCI, CBCXI,
and CBCQI cataloged procedures, which are used for IPA Link, contain the
variable IMEMLIM, which can be used to override the default MEMLIMIT value.

IPA object module binary compatibility
Release-to-release binary compatibility is maintained by the z/OS XL C/C++ IPA
compilation and IPA link phases, as follows:
v An object file produced by an IPA compilation which contains IPA object or

combined IPA and conventional object information can be used as input to the
IPA link phase of the same or later version/release of the compiler.

v An object file produced by an IPA compilation which contains IPA object or
combined IPA and conventional object information cannot be used as input by
the IPA link phase of an earlier Version/Release of the compiler. If this is
attempted, an error message will be issued by the IPA Link.

v If the IPA object is reproduced by a later IPA compilation, additional
optimizations may be performed and the resulting application program might
perform better.

Exception: The IPA object files produced by the OS/390 V1R2 C IPA compilation
must by recompiled from the program source using an OS/390 V1R3 or later
C/C++ compiler before you attempt to process them with the z/OS V2R2 XL
C/C++ IPA Link.

LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2)
compiler option and macro redefinitions

As of z/OS V1R7 XL C, the treatment of macro redefinitions has changed. For
LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2), the XL C compiler will
issue a severe message instead of a warning message when a macro is redefined to
a value that is different from the first definition.

Note: Compare the treatment of macro redefinitions for these LANGLVL
sub-options with that for “LANGLVL(EXTENDED) compiler option and macro
redefinitions.”

LANGLVL(EXTENDED) compiler option and macro
redefinitions

As of z/OS V1R7 XL C, you can redefine a macro that has not been first undefined
with LANGLVL(EXTENDED).

#define COUNT 1
#define COUNT 2 /* error */

Figure 9. Macro redefinition

64 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

With z/OS V1R6 C and previous C compilers, this test will return "1". As of z/OS
V1R7 XL C, this test will return "2".

Note: Compare the treatment of macro redefinitions for LANGLVL(EXTENDED)
with that for “LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler
option and macro redefinitions” on page 64LANGLVL(ANSI), LANGLVL(SAA), or
LANGLVL(SAAL2).

LANGLVL(LONGLONG) compiler option
The long long data type is supported as a native data type when the
LANGLVL(LONGLONG) option is turned on. This option is turned on by default
by the compiler option LANGLVL(EXTENDED). The _LONG_LONG macro is
predefined for all language levels other than ANSI.

As of z/OS V1R6 C/C++ compiler, when LANGLVL(LONGLONG) is turned on,
the _LONG_LONG macro is defined by the compiler.

Attention: If you have defined your own _LONG_LONG macro in previous
compiler releases, you must remove this user-defined macro before you compile
your program.

LOCALE compiler option
As of z/OS V1R9 XL C/C++, the __LOCALE__ macro is defined to the name of
the compile-time locale. If you specified LOCALE(strinf string literal), the compiler
uses the runtime function setlocale(LC_ALL "string literal") to determine the name
of the compile-time locale. If you do not use the LOCALE compiler option, the
macro is undefined.

Prior to z/OS V1R9 XL C/C++, the __LOCALE__ macro was defined to "" when
the LOCALE option was specified without a suboption.

M compiler option
Before z/OS V1R11, the stand-alone makedepend utility was used to analyze
source files and determine source dependencies. As of z/OS V1R11, the M
(-qmakedep) compiler option is introduced, and this compiler option is
recommended to be used to obtain similar information. Specifying the M compiler
option is equivalent to specifying the -qmakedep with no suboption.

The M compiler option is used to generate a make description file as a side-effect of
the compilation process. The description file contains a rule or rules suitable for
make that describes the dependencies of the main compilation source file.

On z/OS systems, the M compiler option resolves a number of complexities that is
not properly managed by the compiler-independent makedepend utility, thereby
improving the accuracy of the dependency information.

#define COUNT 1
#define COUNT 2

int main () {
return COUNT;

}

Figure 10. Macro redefinition under LANGLVL(EXTENDED)

Chapter 10. Compile-time migration issues with OS/390 programs 65

The MF option is used in conjunction with the M option and specifies the name of
the file where the dependency information is generated, or the location of the file,
or both. The MF option has no effect unless make dependency information is
generated.

The MG option is used in conjunction with the M option and instructs the
compiler to include missing header files into the make dependencies file.

The MT option is used in conjunction with the M option and sets the target to the
<target_name> instead of the default target name. This is useful in cases where the
target is not in the same directory as the source or when the same dependency rule
applies to more than one target.

The MQ option is the same as the MT option except that the MQ option escapes
any characters that have special meaning in make.

For detailed information, refer to MAKEDEP compiler option in z/OS XL C/C++
User's Guide.

OPTIMIZE compiler option
In the OS/390 V1R2, V1R3, V2R4, and V2R5 C/C++ compilers:
v OPT(0) mapped to NOOPT
v OPT and OPT(1) mapped to OPT(1)
v OPT(2) mapped to OPT(2)

As of OS/390 V2R6 C/C++:
v OPT(0) maps to NOOPT
v OPT, OPT(1) and OPT(2) map to OPT(2)

As of z/OS V1R5 C/C++, OPT(3) provides the compiler's highest and most
aggressive level of optimization. OPT(3) is recommended only when the desire for
runtime improvement outweighs the concern for minimizing compilation
resources.

NORENT compiler option
In previous releases of the compiler, #pragma variable (name, RENT) had no effect
if the compiler option was NORENT. As of OS/390 V2R9 compiler, a variable can
be reentrant even if the compiler option is NORENT. For more information, see
“Reentrant variables when the compiler option is NORENT” on page 71.

ROSTRING compiler option
As of z/OS V1R2 C/C++ compiler, the ROSTRING option default for C is changed
from NOROSTRING to ROSTRING. The default for C++ has always been
ROSTRING.

ROSTRING informs the compiler that string literals are read-only, thus allowing
more freedom for the compiler to handle string literals. If you are not sure whether
your program modifies string literals or not, specify the NOROSTRING compiler
option.

66 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

ROCONST compiler option
As of z/OS V1R2 C/C++ compiler, the ROCONST option default for C++ is
changed from NOROCONST to ROCONST. The default for C remains
NOROCONST.

As of OS/390 V2R10 C/C++ compiler, #pragma variable (name, NORENT) is
accepted if the ROCONST option is turned on, and the variable is const-qualified
and not initialized with an address. In previous releases, #pragma variable (name,
NORENT) was ignored for static variables.

STATICINLINE compiler option
As of z/OS V1R2 C/C++ compiler, the compiler supports the STATICINLINE
compiler option. The default is NOSTATICINLINE. Specify STATICINLINE for
compatibility with C++ compilers provided by previous versions of the compiler.
For detailed information, refer to STATICINLINE compiler option in z/OS XL
C/C++ User's Guide.

SQL compiler option and SQL EXEC statements
See Chapter 21, “Migration issues with earlier C/C++ applications that use DB2,”
on page 139.

TARGET compiler option
As of z/OS V2R2 XL C/C++, the earliest release that can be targeted is z/OS
V1R13. For more information about the TARGET compiler option, refer to z/OS XL
C/C++ User's Guide.

See also “Program modules from an earlier release” on page 101.

TEST compiler option
As of z/OS V1R6 C/C++, when using the c89/c++ utility, the -g flag has changed
from specifying the TEST option to DEBUG(FORMAT(DWARF)). For more
information, see “Debug format specification” on page 97.

Note: Under ILP32 only, you can use the environment variable
{_DEBUG_FORMAT} to determine the debug format (DWARF or ISD) to which the
-g flag option is translated. For information about this environment variable and
the c89/c++ utility, refer to the c89 utility information in z/OS XL C/C++ User's
Guide, SC14-7307.

TUNE compiler option
As of z/OS V2R2 XL C/C++ compiler, the default value of the TUNE compiler
option is 8.

As of z/OS V2R1 XL C/C++ compiler, the default value of the TUNE compiler
option is 7.

As of z/OS V1R6 C/C++ compiler, the default value of the TUNE compiler option
is 5.

Changes in IBM data set names
The names of IBM-supplied data sets may change from one release to another. See
z/OS Program Directory for more information on data set names.

Chapter 10. Compile-time migration issues with OS/390 programs 67

|

|
|

|
|

|
|

Introduction of 1998 Standard C++ support
As of z/OS V1R2, the C++ compiler supports Programming languages - C++
(ISO/IEC 14882:1998(E)). See Part 5, “ISO Standard C++ compliance migration
issues,” on page 115 for details.

Changes that affect performance and optimization
When you recompile OS/390 C/C++ programs with z/OS V2R2 XL C/C++
compiler, be aware of changes that you can make to improve performance.

Addition of the #pragma reachable and #pragma leaves
directives

The #pragma reachable and #pragma leaves directives help the optimizer in
moving code around the function call site when exploring opportunities for
optimization. Since the addition of these pragmas in OS/390 V2R9, the optimizer is
more aggressive.

For more information on using #pragma reachable and #pragma leaves directives,
refer to z/OS XL C/C++ Language Reference, SC14-7308.

Changes that affect customized JCL procedures
The following topics apply if the JCL procedures that you are using either have
been customized or should be customized.

Potential increase in memory requirements
Memory requirements for compilation may increase for successive releases as new
logic is added. If you cannot recompile an application that you successfully
compiled with a previous release of the compiler, try increasing the region size. For
the current default region size, refer to the z/OS XL C/C++ User's Guide.

As of z/OS V1R12 XL C/C++, when using the IPA compiler option to compile
very large applications, you might need to increase the size of the work file
associated with SYSUTIP DD in the IPA Link step. If you are linking the
application in a USS environment, you can control the size of this work file with
the _CCN_IPA_WORK_SPACE environment variable. If particularly large source
files are compiled with IPA, the default size of the compile-time work files might
also need to be increased. These can be modified via the prefix_WORK_SPACE
environment variables.

JCL CBCI and CBCXI procedures and the variable CLBPRFX
As of z/OS V1R5 C++ compiler, the CBCI and CBCXI procedures contain the
variable CLBPRFX. If you have any JCL that uses these procedures, either they
must customized (for example, at installation time) or you must modify your JCL
to provide a value for CLBPRFX.

Syntax to invoke the CC command
With the C/C++ for MVS/ESA V3R2, OS/390, and z/OS XL C/C++ compilers,
you can use a new syntax to invoke the CC command.

68 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

At customization time, your system programmer can customize the CC EXEC to
accept only the old syntax (the one supported by compilers before C/C++ for
MVS/ESA V3R2) compiler, only the new syntax, or both syntaxes.

The CC EXEC should be customized to accept only the new syntax.

If you customize the CC EXEC to accept both the old and new syntaxes, you must
invoke it using either the old or the new syntax, not a mixture of both. Be aware
that the old syntax does not support UNIX System Services files provided with
z/OS.

Refer to the z/OS Program Directory for more information about installation and
customization, and to the z/OS XL C/C++ User's Guide for more information about
compiler options.

Removal of Model Tool support
As of OS/390 V2R10 C/C++ compiler, Model Tool is no longer available.

Chapter 10. Compile-time migration issues with OS/390 programs 69

70 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 11. Bind-time migration issues with OS/390 C/C++
programs

This information helps application programmers understand and resolve the
compatibility issues that might occur when they relink programs from an OS/390
C/C++ compiler to z/OS V2R2 XL C/C++.

Executable program compatibility problems that require source changes are
discussed in Chapter 9, “Source code compatibility issues with OS/390 programs,”
on page 57.

Notes:

1. An executable program is the output of the prelink/link or bind process. For
more information, see "Prelinking and linking of z/OS XL C/C++ programs" in
z/OS XL C/C++ User's Guide.

2. The terms in this topic having to do with linking (bind, binding, link, link-edit)
refer to the process of creating an executable program from object modules.

3. The output of a prelinking, linking, or binding process depends on where the
programs are stored:
v When the programs are stored in a PDS, the output is a load module.
v When the programs are stored in a PDSE or in UNIX System Services files,

the output is a program object.

When you bind programs that were previously compiled with an OS/390 compiler
and library, be aware of the following potential migration issues:
v “Reentrant variables when the compiler option is NORENT”

Reentrant variables when the compiler option is NORENT
If your program includes multithreaded operations, be aware of changes in the
behavior of pragma variables.

In previous releases of the compiler, #pragma variable (name, RENT) had no effect
if the compiler option was NORENT. As of OS/390 V2R9, a variable can be
reentrant even if the compiler option is NORENT.

This change may cause some programs that compiled and linked successfully in
previous releases to fail during link-edit in the current release. This applies if all of
the following are true:
v The program is written in C and compiled with the NORENT option
v At least one variable is reentrant
v The program is compiled and linked with the output directed to a PDS and the

prelinker was NOT used.

Note: JCL procedures that may have been used to do this in previous releases
are: EDCCL, EDCCLG, EDCL, and EDCLG (not all of these procedures are
available, starting with the z/OS V1R7 XL C/C++ compiler).

© Copyright IBM Corp. 2015 71

72 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 12. Runtime migration issues with OS/390 C/C++
applications

This information helps application programmers understand and resolve the
compatibility issues that might occur when they relink programs from an OS/390
C/C++ compiler to z/OS V2R2 XL C/C++.

When you run applications that were previously compiled with an OS/390
compiler and library, be aware of the following potential migration issues:
v “Retention of OS/390 runtime behavior”
v “Debug format and translation of the c89 -g flag option” on page 74
v “Language Environment customization issues” on page 74

Retention of OS/390 runtime behavior
When your program is using Language Environment services, you can use the
ENVAR runtime option to specify the values of environment variables at execution
time. You can use some environment variables to specify the original runtime
behavior for particular items. The following setting specifies the original runtime
behavior for the greatest number of items:
ENVAR("_EDC_COMPAT=32767")

Alternatively, you can add a call to the setenv() function, either in the CEEBINT
High-Level Language exit routine or in your main() program. If you use CEEBINT
only, you will need to relink your application. If you add a call to setenv() in the
main() function, you must recompile the program and then relink your application.
For more information, refer to setenv() in z/OS XL C/C++ Runtime Library
Reference, SC14-7314 and to Using environment variables in z/OS XL C/C++
Programming Guide.

Changes to the putenv() function and POSIX compliance
As of z/OS V1R5 C/C++, the function putenv() places the string passed to
putenv() directly into the array of environment variables. This behavior assures
compliance with the POSIX standard.

Prior to z/OS V1R5 C/C++, the string used to define the environment variable
passed into putenv() was not added to the array of environment variables. Instead,
the system copied the string into system-allocated storage.

To allow the POSIX-compliant behavior of putenv(), do nothing; it’s now the
default condition.

To restore the previous behavior of putenv(), follow these steps:
1. Ensure that the environment variable, _EDC_PUTENV_COPY, is available on

your pre-z/OS V1R5 system.
2. Set the environment variable _EDC_PUTENV_COPY to "YES".

For additional information, see:
v z/OS XL C/C++ Runtime Library Reference

v _EDC_PUTENV_COPY in z/OS XL C/C++ Programming Guide

© Copyright IBM Corp. 2015 73

Debug format and translation of the c89 -g flag option
As of z/OS V1R6 C/C++, the environment variable _DEBUG_FORMAT can be
used with the c89 utility to specify translation of the -g flag option for 31-bit
compilations:
v If _DEBUG_FORMAT equals DWARF (the default), -g is translated to

DEBUG(FORMAT(DWARF)).
v If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old

translation).

For the impact on specification of compiler options, see “Debug format
specification” on page 97.

For more information about the c89 utility, see the c89 utility information in z/OS
XL C/C++ User's Guide.

Language Environment customization issues
For detailed information about customizing Language Environment runtime
options, libraries, or processes, refer to z/OS Language Environment Customization.

Change in allocation of VSAM control blocks
As of z/OS V1R10, the XL C/C++ compiler instructs VSAM, by default, to allocate
control blocks and I/O buffers above the 16-MB line.

If you determine that this change could be causing a problem, you can use the
VSAM JCL parameter AMP to override the default.

74 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 13. Migration issues resulting from class library
changes between OS/390 C/C++ applications and Standard
C++ library

Class library changes that have taken place since OS/390 C/C++ applications were
developed have resulted in the following migration issues:
v “Function calls to different libraries”
v “Removal of IBM Open Class Library support”
v “Removal of Database Access Class Library utility”
v “Migration of programs with calls to UNIX System Laboratories I/O Stream

Library functions”

Function calls to different libraries
See “Function calls to different libraries” on page 79.

Removal of IBM Open Class Library support
See “References to class libraries that are no longer shipped” on page 79.

Removal of SOM support
As of OS/390 V2R10 C++ compiler, the IBM System Object Model (SOM) is no
longer supported in the C++ compiler.

Removal of Database Access Class Library utility
As of OS/390 V2R4 C++ compiler, the Database Access Class Library utility is no
longer available.

Migration of programs with calls to UNIX System Laboratories I/O
Stream Library functions

See “Migration from UNIX System Laboratories I/O Stream Library to Standard
C++ I/O Stream Library” on page 80.

© Copyright IBM Corp. 2015 75

76 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 4. Migration of earlier z/OS C/C++ applications to z/OS
V2R2 XL C/C++

Earlier z/OS C/C++ applications were created with one of the following
compilers:
v IBM z/OS V1R1 C/C++ (equivalent to the OS/390 V2R10 compiler)
v IBM z/OS V1R2 C/C++
v IBM z/OS V1R3 C/C++
v IBM z/OS V1R4 C/C++
v IBM z/OS V1R5 C/C++
v IBM z/OS V1R6 C/C++
v IBM z/OS V1R7 XL C/C++
v IBM z/OS V1R8 XL C/C++
v IBM z/OS V1R9 XL C/C++
v IBM z/OS V1R10 XL C/C++
v IBM z/OS V1R11 XL C/C++
v IBM z/OS V1R12 XL C/C++
v IBM z/OS V1R13 XL C/C++
v IBM z/OS V2R1 XL C/C++
v IBM z/OS XL C/C++ V2R1M1 web deliverable

Note: The z/OS V1R3 and V1R4 compilers are equivalent to the z/OS V1R2
compiler.

Significant class library changes occurred with releases z/OS V1R5 C/C++ through
z/OS V1R9 XL C/C++. These changes could necessitate changes in your source
code.

Notes:

1. If your application uses IBM CICS information or statements, also see
Chapter 20, “Migration issues with earlier C/C++ applications that run CICS
statements,” on page 133.

2. If your application uses IBM DB2 information or statements, also see
Chapter 21, “Migration issues with earlier C/C++ applications that use DB2,”
on page 139.

The following topics provide information relevant to migrating an earlier z/OS
C/C++ application to z/OS V2R2 XL C/C++:
v Chapter 14, “Source code compatibility issues with earlier z/OS C/C++

programs,” on page 79
v Chapter 15, “Compile-time migration issues with earlier z/OS C/C++

programs,” on page 87
v Chapter 16, “Bind-time migration issues with earlier z/OS C/C++ programs,” on

page 101
v Chapter 17, “Runtime migration issues with earlier z/OS C/C++ applications,”

on page 105

© Copyright IBM Corp. 2015 77

78 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 14. Source code compatibility issues with earlier
z/OS C/C++ programs

Significant class library changes have occurred between z/OS V1R5 C/C++
compiler and z/OS V2R2 XL C/C++ compiler. These changes could necessitate
changes in your source code. Otherwise, you can likely use source programs that
were created with one of the earlier z/OS C/C++ compilers without modification.

Exceptions are highlighted in the following topics:
v “Function calls to different libraries”
v “References to class libraries that are no longer shipped”
v “Migration from UNIX System Laboratories I/O Stream Library to Standard C++

I/O Stream Library” on page 80
v “Standard C++ compliance compatibility issues” on page 80
v “Use of XL C/C++ library functions” on page 80
v “Use of pragmas” on page 84
v “Virtual function declaration and use” on page 84

Note: Some source code compatibility issues can be addressed by modifying
runtime options. See Chapter 12, “Runtime migration issues with OS/390 C/C++
applications,” on page 73.

Function calls to different libraries
While it is possible to use functions from more than one library, (Standard C++
I/O Stream Library, UNIX System Laboratories I/O Stream Library, and C I/O), it
is not recommended because it requires that your code perform extra tasks. For
example, the UNIX System Laboratories I/O Stream Library uses a separate buffer
so you would need to flush the buffer after each call to cout by either setting
ios::unitbuf or calling sync_with_stdio().

You should avoid switching between the I/O Stream Library formatted extraction
functions and C stdio.h library functions whenever possible, and you should also
avoid switching between versions of the I/O Stream Libraries. For more
information, see z/OS XL C/C++ Programming Guide, SC14-7315.

References to class libraries that are no longer shipped
As of z/OS V1R9, IBM Open Class Library (IOC) dynamic link libraries (DLLs) are
no longer shipped with the z/OS XL C/C++ compiler.

Any source dependency on an IOC DLL must be removed.

For information about the libraries that are supported by the current release, see
z/OS XL C/C++ Runtime Library Reference.

© Copyright IBM Corp. 2015 79

Migration from UNIX System Laboratories I/O Stream Library to
Standard C++ I/O Stream Library

The values for some enumerations differ slightly between the UNIX System
Laboratories and Standard C++ I/O Stream Library. This may cause problems
when migrating programs to the Standard C++ I/O Stream Library.

The following IOS format flags have been added to the Standard C++ I/O Stream
Library:
v boolalpha

v adjustfield

v basefield

v floatfield

The following IOS format flags have been removed:
v flags for format control: stdio
v flags for open-mode control: nocreate, noreplace, bin

v flags for the io-state control: hardfail

There might be other small differences.

Standard C++ compliance compatibility issues
As of z/OS V1R7, the XL C++ compiler supports Programming languages - C++
(ISO/IEC 14882:2003(E)), which documents the currently supported Standard C++.
For more information, see Part 5, “ISO Standard C++ compliance migration issues,”
on page 115.

Use of XL C/C++ library functions
The use of XL C/C++ library functions can be affected by performance
enhancements such as:
v “Timing of processor release by the pthread_yield() function”
v “New information returned by the getnameinfo() function” on page 81

as well as by changes to external standards, such as:
v “Feature test macros and system header files” on page 81
v “Potential need to include _Ieee754.h” on page 81
v “New definitions exposed by use of the _OPEN_SYS_SOCK_IPV6 macro” on

page 82
v “Required changes to fprintf and fscanf strings %D, %DD, and %H” on page 82
v “Changes to the putenv() function and POSIX compliance” on page 82
v “Required changes to fprintf and fscanf strings due to new specifiers for vector

types” on page 83

Timing of processor release by the pthread_yield() function
As of z/OS V1R8 XL C/C++ compiler, the _EDC_PTHREAD_YIELD environment
variable can be used to either release the processor immediately, or release the
processor after a delay. This change affects both the pthread_yield() and
sched_yield() functions.

80 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

In prior releases, control was passed back to the calling thread without releasing
the processor whenever multiple intra-thread calls to pthread_yield() occurred
within .01 seconds of one another.

If you want to continue to use the previous internal timing algorithm, use the
following command:
_EDC_PTHREAD_YIELD=-1

For information about _EDC_PTHREAD_YIELD and setting environment variables,
see Using environment variables in z/OS XL C/C++ Programming Guide, SC14-7315.

For information about the pthread_yield() and sched_yield() functions, see z/OS
XL C/C++ Runtime Library Reference, SC14-7314.

New information returned by the getnameinfo() function
As of z/OS V1R9 XL C/C++ compiler, invocations of the getnameinfo() function
might need to be modified to handle interface information appended to the host
name. Prior to z/OS V1R9, the getnameinfo() function ignored the zone index
value in the input sockaddr_in6 structure.

Ensure that you verify the capability to handle scope information of getnameinfo()
invocations that have the following characteristics:
v The sa argument represents an IPv6 link-local address.
v The sin6_scope_id member of sa is non-zero.

The scope information is returned in the format hostname%interface. The host name
is the node name associated with the IP address in the buffer pointed to by the
host argument. By default, the scope information is the interface name associated
with the zone index value.

For information about options for addressing this change, see Communications
Server migration actions in z/OS V2R2 Migration, GA32-0889.

For information about the getnameinfo() function, see z/OS XL C/C++ Runtime
Library Reference, SC14-7314.

Feature test macros and system header files
You must define the feature test macros that you need before including any system
headers.

Feature test macros control which symbols are made visible in a source file
(typically a header file). For detailed information about header files and supported
feature test macros, see z/OS XL C/C++ Runtime Library Reference, SC14-7314.

Potential need to include _Ieee754.h
As of z/OS XL C/C++ V1R9 compiler, the <math.h> file (included in the
<tgmath.h> header file) no longer includes the <_Ieee754.h> file, which declares
IEEE 754 interfaces.

This change avoids potential namespace pollution. If your code needs any symbols
that are defined in <_Ieee754.h>, you must explicitly include that header file.

For additional information about runtime library support of decimal floating-point
data types and functions, see z/OS XL C/C++ Runtime Library Reference, SC14-7314.

Chapter 14. Source code compatibility issues with earlier z/OS C/C++ programs 81

New definitions exposed by use of the
_OPEN_SYS_SOCK_IPV6 macro

As of z/OS V1R7 XL C++ compiler, recompiling an earlier C/C++ program that
uses the _OPEN_SYS_SOCK_IPV6 feature test macro will expose new definitions in the
system header files as well as new functions in netinet/in.h. These new functions
are:

inet6_opt_append() inet6_opt_find() inet6_opt_finish() inet6_opt_get_val()
inet6_opt_init() inet6_opt_next() inet6_opt_set_val() inet6_rth_add()
inet6_rth_getaddr() inet6_rth_init() inet6_rth_reverse() inet6_rth_segments()
inet6_rth_space()

Required changes to fprintf and fscanf strings %D, %DD, and
%H

As of z/OS V1R8, XL C/C++ supports decimal floating point size modifiers ("D",
"DD", and "H") for the fprintf and fscanf families of functions. If a percent sign
(%) is followed by one of these character strings, which had no meaning under
previous releases of z/OS XL C/C++, the compiler could interpret the data as a
size modifier. Treatment of this condition is undefined and the behavior could be
unexpected.

For a description of the potential results, see “Unexpected output from fprintf() or
fscanf()” on page 106.

If you are using z/OS V1R9 XL C/C++ compiler and you want the fprintf() and
fscanf() families of functions to produce the same results as your previous
compiler, change your source code input as shown in Table 13.

Table 13. Example: Code change for fprintf/fscanf character strings "%D", "%DD", and "%H"

Existing statement Modification required under z/OS V2R2 XL C/C++

printf(“This results in a 10%Deduction.\n”); printf(“This results in a 10%%Deduction.\n”);

Changes to the putenv() function and POSIX compliance
As of z/OS V1R5 C/C++, the function putenv() places the string passed to
putenv() directly into the array of environment variables. This behavior assures
compliance with the POSIX standard.

Prior to z/OS V1R5 C/C++, the string used to define the environment variable
passed into putenv() was not added to the array of environment variables. Instead,
the system copied the string into system-allocated storage.

To allow the POSIX-compliant behavior of putenv(), do nothing; it’s now the
default condition.

To restore the previous behavior of putenv(), follow these steps:
1. Ensure that the environment variable, _EDC_PUTENV_COPY, is available on

your pre-z/OS V1R5 system.
2. Set the environment variable _EDC_PUTENV_COPY to "YES".

For additional information, see:
v z/OS XL C/C++ Runtime Library Reference

82 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

v _EDC_PUTENV_COPY in z/OS XL C/C++ Programming Guide

Required changes to fprintf and fscanf strings due to new
specifiers for vector types

As of z/OS V2R1 (with APAR PI20843), XL C/C++ runtime supports new
specifiers for the fprintf and fscanf families of functions for vector data types. The
newly introduced specifiers include separator flags "," (comma), ";" (semicolon), ":"
(colon), and "_" (underscore) and optional prefixes "v", "vh", "hv", "vl", "lv", "vll",
"llv", "vL", and "Lv". If a percent sign (%) is followed by one of these character
strings, which had no meaning under previous releases, the runtime could
interpret the data as a vector type specifier. Treatment of this condition is
undefined and the behavior could be unexpected.

For a description of the potential results, see “Unexpected output from fprintf() or
fscanf()” on page 106. If you want the same results for these strings as the previous
releases, change the code to avoid using the percent sign (%) followed by
aforementioned character strings in format string parameter of fprintf and fscanf
function families.

C99 support of long long data type
As of z/OS V1R7 XL C/C++ compiler, when you recompile an application that
uses long long support, you might experience problems if the application does one
of the following actions:
v Uses a compiler designed to support C99
v Does not ask for extended features

If an application currently uses the LANGLVL(LONGLONG) compiler option to
get at the long long data type, and also uses certain non-standard long long
macros, recompiling with z/OS V2R2 XL C/C++ may cause compiler error
messages to be issued because these non-standard definitions are hidden unless
both LANGLVL(LONGLONG) and LANGLVL(EXTENDED) are in effect.

If an application currently uses LANGLVL(EXTENDED), the non-standard
definitions will continue to be exposed since extended features are requested. For
those applications that want to use a compiler designed to support C99, but do not
want extended features, change the source code to use the C99 standard long long
macros, as shown in Table 14.

Table 14. C99 standard macros to replace non-standard long long macros that cause z/OS
V2R2 errors

Non-standard long long macros C99 standard long long macros

LONGLONG_MIN LLONG_MIN

LONGLONG_MAX LLONG_MAX

ULONGLONG_MAX ULLONG_MAX

The definitions in Table 14 are commonly used with the following functions:
v llabs()

v the following long long numeric conversion functions
– strtoll()

– strtoull()

– wcstoll()

Chapter 14. Source code compatibility issues with earlier z/OS C/C++ programs 83

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

– wcstoull()

Use of pragmas
Functionality of pragmas can change from release to release, or under different
circumstances. Be aware of the following migration issues:
v “Application of #pragma unroll() as of z/OS V1R7 XL C/C++”
v “Unexpected C++ output with #pragma pack(2)”

Application of #pragma unroll() as of z/OS V1R7 XL C/C++
As of z/OS V1R7 XL C/C++ compiler, the #pragma unroll() directive works only
with for loops.

If your code applies the #pragma unroll() directive to a while or a do loop, the
compiler ignores the pragma directive and generates a warning message.

For detailed information about unrolling loops, refer to any or all of the following
related documents:
v z/OS XL C/C++ Language Reference, SC14-7308

v z/OS XL C/C++ Programming Guide, SC14-7315

v z/OS XL C/C++ User's Guide, SC14-7307

Unexpected C++ output with #pragma pack(2)
An aggregate, which contains char data type members only, has natural alignment
of one byte. XL C retains the natural one-byte alignment but when #pragma
pack(2) is applied to an aggregate, its alignment increases to two bytes.

If XL C and XL C++ program objects need to be compatible, do not use #pragma
pack(2) in your XL C or XL C++ code.

Note: You can use the sizeof operator to test the output whenever #pragma
pack(2) is used.
For more information about #pragma pack(2), refer to the discussion of the
#pragma pack directive twobyte option in z/OS XL C/C++ Language Reference.

Virtual function declaration and use
Figure 11 on page 85 shows a program that, as of z/OS V1R6 C/C++ compiler,
would generate an exception under the IBM object model because the call to a
member function version() on the object _b occurs before the declaration of _b.

84 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

#include

class A {
public:

A(int i) : v(i) {}
virtual int version() {return 0;} �1�;
private: int v;

};

class B:virtual public A {
public:
B(int i) : A(i) {}

};

extern B _b; �2�
static int ver = _b.version(); �3�
B _b(1); �4�

int main() {
printf("version: %d\n", ver);
return 0;

}

Notes:

1. The virtual keyword tells the compiler that the function is virtual and it can be
overloaded by any derived class of A.

2. A reference to externally defined _b of type B.

3. The value of static global variable ver is initialized with the value returned by member
function version() called by object _b. An exception will be raised because the object _b
is not fully constructed at the time of the call to the member function version().

4. The declaration of the polymorphic object _b occurs after its use on the previous line.
This line should precede the definition of ver to ensure that the virtual function
version() is found at run time.

Figure 11. Example that highlights sequence of statements to declare and call a virtual
function

Chapter 14. Source code compatibility issues with earlier z/OS C/C++ programs 85

86 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 15. Compile-time migration issues with earlier z/OS
C/C++ programs

When you compile earlier z/OS C/C++ programs with z/OS V2R2 XL C/C++, be
aware of the following information:
v “Changes in compiler listings, messages, and return codes”
v “Changes in compiler option functionality” on page 91
v “Changes that affect compiler invocations” on page 96
v “Changes that affect JCL procedures” on page 98
v “JCL that runs pre-z/OS V1R5 C/C++ programs” on page 100
v “Compiler options that manage Standard C++ compliance” on page 100
v “Impact of recompiling applications that include <net/if.h> with the

_XOPEN_SOURCE_EXTENDED feature test macro” on page 100
v “Impact of recompiling applications that include the pselect() interface” on page

100
v “Impact of recompiling with the _OPEN_SYS_SOCK_IPV6 macro” on page 100
v “Impact of recompiling code that relies on math.h to include IEEE 754

interfaces” on page 100

Changes in compiler listings, messages, and return codes
From release to release, message contents can change and, for some messages,
return codes can change. Errors can become warnings, and warnings can become
errors. You must update any application that is affected by changes in message
contents or return codes. Do not build dependencies on message contents, message
numbers, or return codes. See z/OS XL C/C++ Messages for a list of compiler
messages.

Listing formats, especially the pseudo-assembler parts, will continue to change
from release to release. Do not build dependencies on the structure or content of
listings. For information about C listings or the C++ listings for the current release,
refer to z/OS XL C/C++ User's Guide, SC14-7307.

You might need to be aware of changes with respect to the following issues:
v “Appearance of compiler substitution variables” on page 88
v “Function offsets in source listing” on page 88
v “Diagnostic refinement in identification of linkage issues (C++ only)” on page 88
v “References to UNIX System Services file names” on page 89
v “Non-compliant array index raises an exception” on page 89
v “Unexpected name lookup error messages with template use” on page 90
v “Width of mnemonic in assembly listings” on page 90
v “Macro redefinitions and error messages” on page 90

For information about the language levels that are affected, see “LANGLVL(ANSI),
LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions”
on page 93 and “LANGLVL(EXTENDED) compiler option and macro
redefinitions” on page 94.

© Copyright IBM Corp. 2015 87

Appearance of compiler substitution variables
As of z/OS V1R10, the compiler substitution variable appears, where applicable, in
the message section of a compilation listing. This is to avoid the confusion that can
be caused by a string of blank spaces in the listing.

Corrections in escape sequence encoding
As of z/OS V1R11, the encoding of octal escape characters in string literals and
wide string literals is corrected. See the corrected processing in the following table
(where the bytecode is shown using base 16).

Table 15. Corrections in escape sequence encoding

Example
Old bytecode
(INCORRECT)

New bytecode
(CORRECT) Description

"\776" 01fe00 fe00 Octal escape
overflow in narrow
string literals.

L"\776" 0001fe00 00 01fe0000 Octal escape above
\377 (no overflow) in
wide string literal.

Function offsets in source listing
As of z/OS V1R10, the XL C/C++ compiler adds the starting offset of each
function to the listing when the OFFSET option is specified.

Diagnostic refinement in identification of linkage issues (C++
only)

Prior to z/OS V1R9 XL C/C++ PTF UK31348, the XL C++ compiler diagnosed any
case in which two functions with the same linkage signature were mapped
together. For examples, see Figure 12 and Figure 13 on page 89.

As of z/OS V1R9 XL C/C++ PTF UK31348, the XL C++ compiler diagnoses two
functions that are mapped together only when both are defined in the same
compilation unit, without considering differences in linkage signature. See
Figure 14 on page 89.

The diagnostic message will identify the mapping of foo with "bar" as invalid
because their declarations differ in type.

// t.C
extern "C" int foo(int);
extern "C" int bar(double);
#pragma map (foo, "bar")
int f() { return foo(2) + bar(3.0);}

Figure 12. Example of diagnosis of two externally defined functions with different types
mapped together, prior to z/OS V1R9 XL C/C++ PTF UK31348

88 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

The diagnostic message will identify the mapping of foo with "bar" as invalid
because, although they are defined with the same type, one is defined with a
default linkage.

The diagnostic message will identify the mapping of foo with "bar" as invalid
because both are defined, which violates the one-definition rule.

References to UNIX System Services file names
As of z/OS V1R9, when compiling C source files that reside in the UNIX System
Services file system, any messages emitted during the compilation will use relative
path information, rather than absolute path information, to reference the file name.
This makes all file-name references in the compiler error messages and listings
consistent in that they all use relative path information.

Non-compliant array index raises an exception
As of z/OS V1R9 XL C++, an error message is generated whenever an array index
is defined as anything other than an integral non-volatile constant expression. This
change alerts you that your code does not comply with the currently supported
C++ Standard (section 5.19). For an example, see Figure 15.

Notes:

1. To avoid this problem, redefine the array index to an integral non-volatile
constant expression.

2. Prior to z/OS V1R9 XL C++, the compiler allowed local validation of this rule.

The compiler will generate a message stating that the expression must be an
integral non-volatile constant expression.

// t.C
int foo(double);
extern "C" int bar(double);
#pragma map (foo, "bar")
int f() { return foo(2) + bar(3.0);}

Figure 13. Example of diagnosis of two externally defined functions with different linkage
signatures mapped together, prior to z/OS V1R9 XL C/C++ PTF UK31348

// t.C
extern "C" int foo(int) { return 0; }
extern "C" int bar(int) { return 2.0; }
#pragma map (foo, "bar")
int f() { return foo(2) + bar(3.0);}

Figure 14. Example of diagnosis of two functions with the same linkage signatures mapped
together as of z/OS V1R9 XL C/C++ with PTF UK31348 applied

void f() {}
int main()
{
int i[(int)f];
return 0;
}

Figure 15. Example of volatile array index

Chapter 15. Compile-time migration issues with earlier z/OS C/C++ programs 89

Unexpected name lookup error messages with template use
As of z/OS V1R9 XL C++ compiler, new name lookup exceptions could result from
compiling a template which uses symbolic names that do not depend on that
template's parameters. For an example, see Figure 16 and Figure 17.

Symbolic names that are not dependent on a template parameter must be:
v Declared before they are used.
v Defined before they are used in a context that requires a complete definition.

Earlier releases allowed names to be used in a template definition before they were
declared as long as they were declared before the template was instantiated.

Note: This change will not affect well-formed code, which always defines names
in the source code before using them.
For information about using templates in C++ programs, see z/OS XL C/C++
Programming Guide, SC14-7315. For information about compiling, binding, and
running C++ templates, see z/OS XL C/C++ User's Guide.

If the compiler encounters this code before it encounters the declarations of the
symbolic names FAIL, ZERO, and ONE, it will generate the messages listed in
Figure 17.

Width of mnemonic in assembly listings
As of z/OS V1R9 XL C/C++ compiler, customized JCL procedures or other tools
that scan assembly listings might need to be updated because the width of the
instruction mnemonic has been increased.

Macro redefinitions and error messages
As of z/OS V1R7 XL C, the behavior of macro redefinition has changed. For
certain language levels, the XL C compiler will issue a severe error message
instead of a warning message when a macro is redefined to a value that is
different from the first definition.

template <class T> void fnc(T &x, T y)
{

int t1=FAIL;
int t2=ZERO;
int t3=ONE;

}

enum ENUMTYPE {ZERO = 3, ONE, FAIL} e1, e2, e3, e4;

struct tst{};

template void fnc(tst &x, tst y);

Figure 16. Example of C++ template code that will cause name lookup exceptions.

"./ex1.cpp", line 3.11: CCN5274 (S) The name lookup for "FAIL" did not find a declaration.
"./ex1.cpp", line 8.31: CCN6303 (I) "ENUMTYPE FAIL" is not visible.
"./ex1.cpp", line 1.25: CCN5700 (I) The previous message was produced while

processing "fnctst(tst &, tst)".
"./ex1.cpp", line 4.11: CCN5274 (S) The name lookup for "ZERO" did not find a declaration.
"./ex1.cpp", line 8.16: CCN6303 (I) "ENUMTYPE ZERO" is not visible.
"./ex1.cpp", line 5.11: CCN5274 (S) The name lookup for "ONE" did not find a declaration.
"./ex1.cpp", line 8.26: CCN6303 (I) "ENUMTYPE ONE" is not visible.

Figure 17. Messages that result from attempts to compile the code in Figure 16.

90 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Changes in compiler option functionality
The following topics describe changes in compiler option functionality that might
require modifications to either your use of compiler options or your source code.
For detailed information about these compiler options, see z/OS XL C/C++ User's
Guide, SC14-7307.

Option behavior change when processing multiple suboptions
As of z/OS V2R1, when multiple suboptions are specified with the following
options, the compiler no longer issues a diagnostic message, and the last suboption
is used:
v AGGRCOPY
v ASSERT
v CHECKOUT
v DLL
v PORT
v PPONLY

CHECKOUT compiler option
Starting from z/OS V1R13, the CHECKOUT option is deprecated. Use the INFO
option instead of CHECKOUT.

CMDOPTS compiler option and conflict resolution
As of z/OS V1R7 XL C/C++ compiler:
v Default options specified in the configuration file have the same weight as if

they were specified on the command line. The XL C/C++ compiler cannot
distinguish between an option specified in the configuration file and an option
specified on the command line.

v Any conflict between options and pragmas is resolved in favor of the option.
v The XL C/C++ compiler no longer requires that default options be specified in

the configuration file.

As of z/OS V1R7 XL C/C++, if you customize your xlc configuration file using the
sample default configuration file, you might experience a change in behavior
because the defaults for supported xlc commands are no longer specified in the
options attribute in the configuration file. Instead, the xlc utility emits the defaults
as suboptions of the CMDOPTS compiler option. This may cause a change in
behavior because the XL C/C++ compiler resolves conflicts between options and
pragmas differently, depending on whether options are specified as suboptions of
the CMDOPTS option or explicitly on the command line and in the options
attributes.

DFP compiler option and earlier floating-point applications
As of z/OS V1R10, there is a risk that earlier C/C++ applications compiled with
the DFP option could inadvertently reset the decimal floating-point rounding mode
to the default value. You should consider this risk if you are adding decimal
floating-point functionality to an application that includes floating-point operations
which use the data type fenv_t or the function fesetenv() with the static
initializer FE_DFL_ENV. This is because the FE_DFL_ENV and __fe_def_env static
initializers set the decimal floating-point rounding mode to the
FE_DEC_TONEAREST value.

Chapter 15. Compile-time migration issues with earlier z/OS C/C++ programs 91

Be aware of the following constraints
v Because the decimal floating-point rounding mode field is stored in the FPC

register separately from the binary floating-point rounding mode, there will be
no effect on the binary floating-point rounding mode. However, you should take
care with exception handling routines because binary floating-point applications
can use FPC exception flags.

v DFP names will not be exposed when the application is compiled without the
DFP compiler option. (There may also be a new __STDC_WANT_DEC_FP__ C99
feature test macro to further protect against namespace invasion).

v If you are compiling a System Programming C (SPC) application, you should
not use the DFP option; the statically bound version of the SPC function
sprintf() does not support decimal floating-point number formats. Standard
functions that are already supported in the SPC library (such as printf() and
scanf()) will be able to operate on decimal floating-point numbers.

DSAUSER compiler option
Starting from z/OS V1R13 XL C++ compiler, the DSAUSER option is supported.
When the METAL option is in effect, the DSAUSER option requests a user field of
the size of a pointer to be reserved on the stack. The default is NODSAUSER. For
more information, see DSAUSER | NODSAUSER (C only) that is documented in
z/OS XL C/C++ User's Guide.

ENUMSIZE(SMALL) and protected enumeration types in
system header files

As of z/OS V1R7 XL C/C++ compiler, selected enumerated (enum) type
declarations in system header files are protected to avoid potential execution
errors. This allows you to specify the ENUMSIZE compiler option with a value
other than SMALL without risking incorrect mapping of enum data types (for
example, if they were used inside of a structure).

With earlier versions of the compiler, if you specified ENUMSIZE() with a value
other than SMALL, data that was declared with certain enum types could be
incorrectly mapped. In some instances, the header files in the library referenced the
types (such as __device_t in the typedef fldata_t), which resulted in a potential
inconsistency between the mapping seen during application execution and that
declared in the library (which is built with the default ENUMSIZE(SMALL)).

Even when you specify ENUMSIZE with a value other than SMALL, the
enumerations listed in Table 16 will always be ENUMSIZE(SMALL).

Table 16. Header files with declarations of protected enumeration types

Header file Enumerations

stdio.h __device_t

search.h
ACTION
VISIT

sys/uio.h uio_rw

sys/wait.h idtype_t

_Ccsid.h __csType

__ledebug.h
asfAmodeType
asfCallbackResult

yvals.h _Mux

92 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

FLAG compiler option
As of z/OS V1R13, FLAG(I) is the default in z/OS UNIX System Services as it is in
batch compilation.

FLOAT(AFP) suboptions for applications that access CICS
data

See “CICS TS V4.1 with "Extended MVS Linkage Convention"” on page 136.

GENASM compiler option
Starting from z/OS V1R13, the GENASM option is not supported in UNIX System
Services. Instead, you can use the -S flag and the -o option.

GONUMBER compiler option and LP64 support
As of z/OS V1R8 XL C/C++ compiler, the GONUMBER compiler option generates
line number tables for both 31-bit and 64-bit applications.

IPA compiler option
Prior to z/OS V2R1, the default optimization level for the IPA option was
NOOPTIMIZE when the compiler was invoked from JCL.

Starting with z/OS V2R1, the default optimization level for the IPA option is
OPTIMIZE(2) when the compiler is invoked from JCL. This change was made to
match the default optimization level when the compiler is invoked from USS, as
well as the default on the other platforms.

LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2)
compiler option and macro redefinitions

As of z/OS V1R7 XL C, the treatment of macro redefinitions has changed. For
LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2), the XL C compiler will
issue a severe message instead of a warning message when a macro is redefined to
a value that is different from the first definition.

Note: Compare the treatment of macro redefinitions for these LANGLVL
sub-options with that in “LANGLVL(EXTENDED) compiler option and macro
redefinitions” on page 94.

LANGLVL(EXTC1X) compiler option
This option controls that compilation is based on the C11 standard, invoking all the
currently supported C11 features and other implementation-specific language
extensions. For detailed information, see EXTC1X that is documented in z/OS XL
C/C++ User's Guide.

Note: C11 is a new version of the C programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C11 standard is
complete, including the support of a new C standard library, the implementation
may change from release to release. IBM makes no attempt to maintain

#define COUNT 1
#define COUNT 2 /* error */

Figure 18. Macro redefinition

Chapter 15. Compile-time migration issues with earlier z/OS C/C++ programs 93

compatibility, in source, binary, or listings and other compiler interfaces, with
earlier releases of IBM's implementation of the new features of the C11 standard
and therefore they should not be relied on as a stable programming interface.

LANGLVL(EXTENDED) compiler option and macro
redefinitions

As of z/OS V1R7 XL C, you can redefine a macro that has not been first undefined
with LANGLVL(EXTENDED).

With z/OS V1R6 C and previous C compilers, this test will return "1". As of z/OS
V1R7 XL C, this test will return "2".

Note: Compare the treatment of macro redefinitions for LANGLVL(EXTENDED)
with that for “LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler
option and macro redefinitions” on page 93.

LANGLVL(EXTENDED0X) compiler option
This option controls that compilation is based on the C++11 standard, invoking all
the currently supported C++11 features and other implementation-specific
language extensions. The option is implemented in XL C/C++ compiler as of z/OS
V1R11. For detailed information, see LANGLVL(EXTENDED0X) compiler option
that is documented in z/OS XL C/C++ User's Guide.

Note: C++11 is a new version of the C++ programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C++11 standard is
complete, including the support of a new C++ standard library, the implementation
may change from release to release. IBM makes no attempt to maintain
compatibility, in source, binary, or listings and other compiler interfaces, with
earlier releases of IBM's implementation of the new features of the C++11 standard
and therefore they should not be relied on as a stable programming interface.

LOCALE compiler option
As of z/OS V1R9 XL C/C++, the __LOCALE__ macro is defined to the name of
the compile-time locale. If you specified LOCALE(strinf string literal), the compiler
uses the runtime function setlocale(LC_ALL "string literal") to determine the name
of the compile-time locale. If you do not use the LOCALE compiler option, the
macro is undefined.

Prior to z/OS V1R9 XL C/C++, the __LOCALE__ macro was defined to "" when
the LOCALE option was specified without a suboption.

#define COUNT 1
#define COUNT 2

int main () {
return COUNT;

}

Figure 19. Macro redefinition under LANGLVL(EXTENDED)

94 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

M compiler option
Before z/OS V1R11, the stand-alone makedepend utility was used to analyze
source files and determine source dependencies. As of z/OS V1R11, the M
(-qmakedep) compiler option is introduced to provide similar information.

The M compiler option is used to generate a make description file as a side-effect of
the compilation process. The description file contains a rule or rules suitable for
make that describes the dependencies of the main compilation source file.

The MF option is used in conjunction with the M option and specifies the name of
the file where the dependency information is generated, or the location of the file,
or both. The MF option has no effect unless make dependency information is
generated.

The MG option is used in conjunction with the M option and instructs the
compiler to include missing header files into the make dependencies file.

The MT option is used in conjunction with the M option and sets the target to the
<target_name> instead of the default target name. This is useful in cases where the
target is not in the same directory as the source or when the same dependency rule
applies to more than one target.

The MQ option is the same as the MT option except that the MQ option escapes
any characters that have special meaning in make.

For detailed information, refer to MAKEDEP compiler option in z/OS XL C/C++
User's Guide.

RESTRICT option
z/OS V1R12 XL C compiler introduces a new option RESTRICT to indicate to the
compiler that all pointer parameters in some or all functions are disjoint. The
default is NORESTRICT. For detailed information, see RESTRICT | NORESTRICT
(C only) in z/OS XL C/C++ User's Guide.

SEVERITY option
z/OS V1R12 XL C compiler introduces a new option SEVERITY to support
message severity modification. With this option specified, you can set the severity
level for a certain message that you specified. The compiler will use the new
severity when the specified message is generated by the compiler. The default is
NOSEVERITY. For detailed information, see SEVERITY | NOSEVERITY (C only) in
z/OS XL C/C++ User's Guide.

SQL compiler option and SQL EXEC statements
See Chapter 21, “Migration issues with earlier C/C++ applications that use DB2,”
on page 139.

TARGET compiler option
As of z/OS V2R2 XL C/C++, the earliest release that can be targeted is z/OS
V1R13. For more information about the TARGET compiler option, refer to z/OS XL
C/C++ User's Guide.

See also “Program modules from an earlier release” on page 101.

Chapter 15. Compile-time migration issues with earlier z/OS C/C++ programs 95

TEMPLATEDEPTH compiler option
Starting from z/OS V1R13 XL C++ compiler, the TEMPLATEDEPTH option is
supported. With this option, you can specify the maximum number of recursively
instantiated template specializations that are processed by the compiler. The
default is TEMPLATEDEPTH(300). For more information, see TEMPLATEDEPTH
(C++ only) that is documented in z/OS XL C/C++ User's Guide.

Changes that affect compiler invocations
As of z/OS V1R6 C/C++ compiler, compiler invocation is supported by two
different utilities:
v c89
v xlc

z/OS V1R6 C/C++ introduced the following utilities:
v xlc command, to compile a C program
v xlC and xlc++ commands, to compile a C++ program

z/OS V1R6 C/C++ introduced the following command suffixes:
v _x suffix, which compiles the program with XPLINK
v _64 suffix, which compiles the program under LP64

The utility you want to use depends on:
v Whether you need to port code between z/OS and AIX®.
v How you want to set up your build environment.

For example, you can use the command c89_x to compile an ANSI-compliant
program with XPLINK.

Note: As of z/OS V1R7 XL C/C++, you no longer need to use command names
with suffixes _x/_64 to compile/bind an XPLINK or 64-bit application. You can
use suffixless command names with -qxplink/-q64 or -Wc,xplink/-Wc,lp64 and
-Wl,xplink/-Wl,lp64 instead. For detailed information, refer to the c89 utility
information in z/OS XL C/C++ User's Guide.

Table 17. Differences between the c89 and xlc compiler invocation utilities

c89 utility xlc utility

Command support The c89 utility does not
support

v The -S flag option
introduced in z/OS V1R9.

v AIX options syntax.

The following commands
accept AIX C/C++ as well as
z/OS C/C++ options syntax:

v cc

v c89

v cxx

v c++

The xlc utility does not
support the TEMPINC
compiler option.

Environment setup Determined by environment
variables

Determined by configuration
file

96 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Changes that affect use of the c89 command

Debug format specification
As of z/OS V1R6 C/C++, the environment variable _DEBUG_FORMAT can be
used with the c89 utility to specify translation of the -g flag option for 31-bit
compilations:
v If _DEBUG_FORMAT equals DWARF (the default), -g is translated to

DEBUG(FORMAT(DWARF)).
v If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old

translation).

For the impact on the runtime environment, see “Debug format and c89 -g flag
option translation” on page 103.

For more information about using the c89 utility, see the c89 utility information in
z/OS XL C/C++ User's Guide.

Changes that affect use of the xlc utility
When you use the xlc utility to compile or link an existing application, be aware of
the following potential migration issues:
v Changes in processing of return code (see “Exposure of build problems and xlc

utility”)
v Changes in processing of source file comments (see “When C++ style comments

are the default”)

Exposure of build problems and xlc utility
As of z/OS V1R10 XL C/C++ compiler, the xlc utility handles the
*_ACCEPTABLE_RC environment variable as the c89 utility handles it. This
permits users to specify acceptable return codes in order to expose the same build
problems that are exposed with the c89 utility.

You will notice a change in behavior if:
v You use the xlc utility to compile source programs or link-edit object files in an

environment in which the *_ACCEPTABLE_RC environment variable is
exported:

v The *_ACCEPTABLE_RC environment variable has a value other than "4".

Otherwise, the xlc utility behaves the same as it did for earlier releases (assuming
you do not use the acceptable_rc configuration file attribute).

For detailed information about the *_ACCEPTABLE_RC environment variable, see
z/OS UNIX System Services Command Reference. For more information about
specifying acceptable return codes, see z/OS XL C/C++ User's Guide.

When C++ style comments are the default
As of z/OS V1R7 XL C/C++, the xlc command causes the compiler to generate
C++ style comments by default. This change will not normally affect your
program. But in the special cases where it does (as shown in the example below),
you must either override –qcpluscmt or change your source code.

In Figure 20 on page 98, the intention is to increment the input by one.

Chapter 15. Compile-time migration issues with earlier z/OS C/C++ programs 97

Prior to z/OS V1R7 XL C/C++ compiler, the compiler saw the equivalent of:
printf("%d\n", i / +1); and if the input is 4, the output is also 4.

As of z/OS V1R7 XL C/C++ compiler, the compiler sees the equivalent of:
printf("%d\n", i +1); and if the input is 4, the output is 5, as intended.

Changes that affect JCL procedures
Memory requirements for compilation may increase for successive releases as new
logic is added. If you cannot recompile an application that you successfully
compiled with a previous release of the compiler, try increasing the region size. For
the current default region size, refer to the z/OS XL C/C++ User's Guide.

User-defined conversion tables and iconv() functions
As of z/OS V1R9, the iconv() family of functions utilizes character conversion
services provided by Unicode Services (UCS). Prior to z/OS V1R9 releases, the
iconv() function used either a single byte or a double byte substitution character;
single-byte and double-byte substitution characters were never mixed. As of z/OS
V1R9, the iconv() function will use a single byte substitution character when
converting single byte characters and a multibyte substitution character when
converting multibyte characters in a mixed character set conversion. The
environment variables, _ICONV_MODE and _ICONV_TECHNIQUE control
function behavior.

These changes will affect your compilation only if both of the following conditions
are true:
v Your JCL does specifies user-defined conversion tables.
v Your JCL uses conversion techniques other than LMREC (the default value for

_ICONV_TECHNIQUE).

Otherwise, set the _ICONV_MODE environment variable to C in order to access
the new UCS character conversion services.

Note: When Unicode Services are being used, the _ICONV_UCS2 and
_ICONV_PREFIX environment variables have no meaning.

The iconv() function returns the number of nonidentical conversions performed
during a conversion. As of z/OS V1R9, the iconv() function interprets nonidentical
conversion more strictly. This means that the nonidentical conversion count for the
same input buffer contents might be higher than it was for compilations under
previous releases.

If your program includes CICS statements, also see “Customized CEECCSD.COPY
and CEECCSDX.COPY files and iconv() changes” on page 136.

Note: As of z/OS V1R11, IBM will no longer ship uconvTable binary tables in
either the installation-prefix.SCEEUTBL data set or the z/OS UNIX file system
directory /usr/lib/nls/locale/uconvTable.

printf("%d\n",i//*something*/
+1);

Figure 20. C++ style comment

98 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

ILP32 compiler option and name mangling
As of z/OS V1R9, the default name mangling suboption under ILP32 is zOSV1R2,
whether the ILP32 option is specified during the compiler invocation or used by
default. Any JCL procedure that is run under the ILP32 compiler option (either
explicitly or by default), and does not specify the suboption that controls the name
mangling conventions, will instruct the compiler to mangle names differently that
it did in earlier supported releases.

This change applies to batch processing only. For programs that are compiled
under UNIX System Services, there is no change in behavior.

Note: In earlier supported releases, when ILP32 was either explicitly specified in
the JCL or used by default, the default name mangling suboption was ANSI
instead of zOSV1R2.

IPA(LINK) compiler option and very large applications
As of z/OS V1R12 XL C/C++, when using the IPA compiler option to compile
very large applications, you might need to increase the size of the work file
associated with SYSUTIP DD in the IPA Link step. If you are linking the
application in a USS environment, you can control the size of this work file with
the _CCN_IPA_WORK_SPACE environment variable. If particularly large source
files are compiled with IPA, the default size of the compile-time work files might
also need to be increased. These can be modified via the prefix_WORK_SPACE
environment variables.

IPA(LINK) compiler option and exploitation of 64-bit virtual
memory

As of z/OS V1R12 XL C/C++, the compiler component that executes IPA at both
compile and link time is a 64-bit application, which will cause an XL C/C++
compiler ABEND if there is insufficient storage. The default MEMLIMIT system
parameter size in the SMFPRMxparmlib member should be at least 3000 MB for
the link, and 512 MB for the compile. The default MEMLIMIT value takes effect
whenever the job does not specify one of the following:
v MEMLIMIT in the JCL JOB or EXEC statement
v REGION=0 in the JCL

Note:

v The compiler component that executes IPA(LINK) has been a 64-bit application
since z/OS V1R8 XL C/C++ compiler.

v The MEMLIMIT value specified in an IEFUSI exit routine overrides all other
MEMLIMIT settings.

The UNIX System Services ulimit command that is provided with z/OS can be
used to set the MEMLIMIT default. For information, see z/OS UNIX System Services
Command Reference. For additional information about the MEMLIMIT system
parameter, see z/OS MVS Programming: Extended Addressability Guidez/OS MVS
Programming: Extended Addressability Guide.

As of z/OS V1R8 XL C++ compiler, the EDCI, EDCXI, EDCQI, CBCI, CBCXI, and
CBCQI cataloged procedures, which are used for IPA Link, contain the variable
IMEMLIM, which can be used to override the default MEMLIMIT value.

Chapter 15. Compile-time migration issues with earlier z/OS C/C++ programs 99

JCL that runs pre-z/OS V1R5 C/C++ programs
As of z/OS V1R5, C++ compiler the CBCI and CBCXI procedures contain the
variable CLBPRFX. If you have any JCL that uses these procedures, you must
either customize these procedures (for example, at installation time) or modify
your JCL to provide a value for CLBPRFX.

Compiler options that manage Standard C++ compliance
To make an application conform to the currently supported Standard C++, you
might need to change existing source code. You can use the compiler options and
suboptions to manage those phases. For details, refer to Language element control
options in z/OS XL C/C++ User's Guide, SC14-7307.

Impact of recompiling applications that include <net/if.h> with the
_XOPEN_SOURCE_EXTENDED feature test macro

As of z/OS V1R9, BSD-like socket definitions will not be automatically exposed
when XPG 4.2 namespace is requested. To avoid violation of the standard UNIX
namespace, the definitions are protected with the _OPEN_SYS_IF_EXT feature test
macro.

Note: BSD sockets are used to manipulate network interfaces that are defined in
<net/if.h>. For additional information about header files, see z/OS XL C/C++

Runtime Library Reference, SC14-7314.

Impact of recompiling applications that include the pselect() interface
As of z/OS V1R11, recompilation of an existing XL C/C++ application that
includes the <sys/select.h> header might fail if the application calls the pselect()
interface and the undefined _POSIX_C_SOURCE 200112L feature test macro (or
equivalent). If you need to recompile applications that call pselect(), you must
define the _POSIX_C_SOURCE feature test macro (or equivalent) prior to including
the system headers. Prior to z/OS V1R11, the pselect() declaration in
<sys/select.h> was not protected by a feature test macro.

Impact of recompiling with the _OPEN_SYS_SOCK_IPV6 macro
As of z/OS V1R7, recompiling an earlier C/C++ program that uses the
_OPEN_SYS_SOCK_IPV6 feature test macro will expose new definitions in Language
Environment header files. See “New definitions exposed by use of the
_OPEN_SYS_SOCK_IPV6 macro” on page 82.

Impact of recompiling code that relies on math.h to include IEEE 754
interfaces

As of z/OS V1R9 XL C/C++ compiler, recompilation of earlier C/C++ applications
will fail if the code relies upon math.h to include _Ieee754.h. See “Potential need
to include _Ieee754.h” on page 81.

100 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 16. Bind-time migration issues with earlier z/OS
C/C++ programs

If you are relinking load modules or program objects from a previous release of
z/OS C/C++ compiler, be aware of the following potential migration issues:
v “Unexpected "missing symbol" error (C++ only)”
v “Program modules from an earlier release”
v “Alignment incompatibilities between object models” on page 102
v “Alignment incompatibilities between XL C and XL C++ output with #pragma

pack(2)” on page 102
v “Debug format and c89 -g flag option translation” on page 103
v “argc argv parsing support for Metal C programs” on page 103

Unexpected "missing symbol" error (C++ only)
If the binder is generating "missing symbol" error messages that did not appear
with earlier compilers, it might be due to the change in the treatment of the using
directive that was introduced in the z/OS V1R10 XL C++ compiler. See
“Unqualified name lookups and the using directive” on page 119.

Program modules from an earlier release
When you use z/OS V2R2 XL C/C++ compiler to bind earlier program modules,
be aware of the following migration issues:
v “Namespace pollution binder errors”
v “c89 COMPAT binder option default and programs from an earlier release” on

page 102

Namespace pollution binder errors

As of z/OS V1R8 XL C/C++ compiler, when you target OS/390 V2R10 or an
earlier release while binding or linking your application, you might encounter the
namespace pollution error shown in Figure 21.

Note: z/OS V1R1 C/C++ compiler is the same as OS/390 V2R10 C/C++ compiler.
OS/390 V2R10 is also reshipped in z/OS V1R2 through to V1R6.

If you encounter the error shown in Figure 21, use the code shown in Figure 22 on
page 102 inside a header file that is included by the affected source.

IEW2456E 9207 SYMBOL terminate__3stdFv UNRESOLVED. MEMBER COULD NOT BE INCLUDED
FROM THE DESIGNATED CALL LIBRARY.

FSUM3065 The LINKEDIT step ended with return code 8.

Figure 21. IEW2456E namespace pollution error

© Copyright IBM Corp. 2015 101

c89 COMPAT binder option default and programs from an
earlier release

As of z/OS V1R8 XL C/C++, the c89 utility no longer emits the default for the
COMPAT binder option. This change prevents inadvertant attempts to use features
that are not supported by the targeted release. It means that you have the option to
obtain the binder defaults for the COMPAT option but you are not forced to
override the c89 default when you bind applications intended to run on earlier
releases. If you want to maintain the previous c89 utility behavior, you must do
one of the following:
v Set the _PVERSION environment variable to a release earlier than z/OS V1R8

XL C/C++.
v Specify the COMPAT option on the command line. For example:

-Wl,compat=curr.

If you want to override the binder default for the COMPAT option using the
C/C++ cataloged procedures, specify the desired COMPAT option in the BPARM
proc variable.

Note: When the TARGET compiler option is used, binder features that are not
supported by the targeted release should not be used. In previous releases of the
z/OS C/C++ compiler, the default COMPAT option had to be overridden.

Alignment incompatibilities between object models
As of z/OS V1R6, C/C++ compilers support the IBM object model as well as the
compat object model. The IBM object model has a more complex layout than the
compat object model. The more complex layout supports 64-bit processing as well
as 31-bit processing.

The IBM object model is the default for for 64-bit processing, which is specified by
the LP64 compiler option. The compat object model is the default for 31-bit
processing, which is specified by the ILP32 compiler option. Because each object
model uses a different memory layout, C++ constructs that work under the compat
object model might not work under the IBM object model.

For more information, refer to The z/OS 64-bit environment in z/OS XL C/C++
Programming Guide.

Alignment incompatibilities between XL C and XL C++ output
with #pragma pack(2)

An aggregate, which contains char data type members only, has a natural
alignment of one byte. Typically, XL C retains the natural one-byte alignment.

#ifdef __cplusplus
#if ((__COMPILER_VER__ >= 0x41080000) && (__TARGET_LIB__ == 0x220A0000))
namespace std { void terminate(); }
#pragma map(std::terminate, "terminate__Fv")
#endif
#endif

Note: To prevent targeting an inappropriate release, guard the #pragma map statement with
the __TARGET_LIB__ macro.

Figure 22. Header file code that handles IEW2456E error condition

102 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

However, when #pragma pack(2) is applied to an aggregate, its alignment increases
to two bytes. If you are binding both XL C and XL C++ program modules, and
both C and C++ program modules use #pragma pack(2), there might be alignment
incompatibilities.

See “Unexpected C++ output with #pragma pack(2)” on page 84.

Debug format and c89 -g flag option translation
As of z/OS V1R6 C/C++, the environment variable _DEBUG_FORMAT can be
used with the c89 utility to specify translation of the -g flag option for 31-bit
compilations:
v If _DEBUG_FORMAT equals DWARF (the default), -g is translated to

DEBUG(FORMAT(DWARF)).
v If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old

translation).

For the impact on specification of compiler options, see “Debug format
specification” on page 97.

For detailed information about using the c89 utility, see the c89 in z/OS XL C/C++
User's Guide.

argc argv parsing support for Metal C programs
As of z/OS V1R13, the argc argv parsing capability is added to Metal C programs.
If your Metal C programs work with standard argc and argv arguments, the newly
enabled parsing code generated by the compiler might cause problems.

If you use argc and argv in your main() function, you need to add CBC.SCCNOBJ
dataset to the binder SYSLIB for the resolution of CCNZINIT and CCNZTERM
routines (CCNZQINI and CCNZQTRM for LP64). The CCNZINIT and
CCNZTERM routines need NAB established for their stack space. If you supply
your own prolog and epilog for main(), you need to allocate 1K of extra space (2K
for LP64) in addition to the DSA size suggested by the compiler in the global SET
symbol &CCN_DSASZ.

For more information, see ARGPARSE | NOARGPARSE in z/OS XL C/C++ User's
Guide, SC14-7307.

Chapter 16. Bind-time migration issues with earlier z/OS C/C++ programs 103

104 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 17. Runtime migration issues with earlier z/OS C/C++
applications

Runtime migration issues with earlier z/OS C/C++ programs result from changes
in the Language Environment services, or in changes in functionality of runtime
options.

Be aware of the following potential migration issues:
v “Earlier AMODE 64 applications”
v “Retention of previous runtime behavior” on page 106
v “Failure of authentication process” on page 106
v “Internationalization issues” on page 108
v “Changes in math library functions” on page 109
v “Changes in floating-point support” on page 111
v “Changes in allocation of VSAM control blocks” on page 112
v “Changes to st_mode attribute of AF_UNIX socket files” on page 112
v “Changes to strfmon() output” on page 113
v “Changes to structure t_opthdr in xti.h” on page 113
v “Removal of conversion table source code” on page 113

Earlier AMODE 64 applications
When you run earlier applications under AMODE 64, be aware of the following
potential issues:
v “HEAPPOOLS runtime option no longer ignored in all AMODE 64 applications”

HEAPPOOLS runtime option no longer ignored in all AMODE
64 applications

As of z/OS V1R10, Language Environment services will not ignore the
HEAPPOOLS runtime option when AMODE 64 applications specify it by using the
_CEE_RUNOPTS environment variable.

In earlier Language Environment releases, when the HEAPPOOLS runtime option
was specified via the _CEE_RUNOPTS environment variable, it was handled as
follows:
v When an AMODE 64 application spawned an AMODE 31 process, the AMODE

64 application would ignore the HEAPPOOLS runtime option, but the AMODE
31 process would accept and propagate it.

v When an AMODE 31 application spawned an AMODE 64 process, the AMODE
31 application would accept the HEAPPOOLS runtime option, but the AMODE
64 process would ignore it.

Customized runtime libraries
Language Environment improvements might necessitate changing the way you
build your libraries.

© Copyright IBM Corp. 2015 105

For a list of Language Environment references, refer to “Bibliography” on page
153.

Failure of authentication process
If a pre-z/OS V1R10 XL C/C++ application fails to authenticate any password
strings, it might be because the maximum length of Pass_MAX has increased from
8 bytes to 255 bytes.

You should confirm that there is no change in password authentication behaviour
by existing applications that use the getpass() function.

Retention of previous runtime behavior
When your program is using Language Environment services, you can use the
ENVAR runtime option to specify the values of environment variables at execution
time. You can use some environment variables to specify the original runtime
behavior for particular items. The following setting specifies the original runtime
behavior for the greatest number of items:
ENVAR("_EDC_COMPAT=32767")

Alternatively, you can add a call to the setenv() function, either in the CEEBINT
High-Level Language exit routine or in your main() program. If you use CEEBINT
only, you will need to relink your application. If you add a call to setenv() in the
main() function, you must recompile the program and then relink your application.
For more information, refer to setenv() in z/OS XL C/C++ Runtime Library
Reference, SC14-7314 and to Using environment variables in z/OS XL C/C++
Programming Guide.

Unexpected output from fprintf() or fscanf()
As of z/OS V1R8, XL C/C++ supports decimal floating point size modifiers ("D",
"DD", and "H") for the fprintf and fscanf families of functions. If a percent sign
(%) is followed by one of these character strings, which had no meaning under
previous releases of z/OS XL C/C++, the compiler could interpret the data as a
size modifier. Treatment of this condition is undefined and the behavior could be
unexpected.

For example, Table 18 shows the output, under different conditions, for the
following statement:
printf(“This results in a 10% Deduction.\n”);

Table 18. Potential results of printf(“This results in a 10% Deduction.\n”);

Compiler release Hardware Result

z/OS V1R9 XL C/C++ Without the DFP
facility.

EDC6259S This function is not supported
running on hardware that does not have the
Decimal Floating Point Facility installed.

z/OS V1R9 XL C/C++ With the DFP
facility.

The following is written to stdout:

This results in a 10 2.000000e-390duction.

Earlier z/OS C/C++ Any hardware. The following is written to stdout:

This results in a 10Deduction.

See “Required changes to fprintf and fscanf strings %D, %DD, and %H” on page
82.

106 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

As of z/OS V2R1 (with APAR PI20843), XL C/C++ runtime supports new
specifiers for the fprintf and fscanf families of functions for vector data types. The
newly introduced specifiers include separator flags "," (comma), ";" (semicolon), ":"
(colon), and "_" (underscore) and optional prefixes "v", "vh", "hv", "vl", "lv", "vll",
"llv", "vL", and "Lv". If a percent sign (%) is followed by one of these character
strings, which had no meaning under previous releases, the runtime could
interpret the data as a vector type specifier. Treatment of this condition is
undefined and the behavior could be unexpected.

For example, Table 19 shows the output, under different conditions, for the
following statement:
printf("About 10%visitors are covered%:Need more efforts.\n");

Table 19. Potential results of printf(“About 10%visitors are covered%:Need more efforts.\n”);

Compiler release Hardware Result

z/OS V2R1 XL C/C++
(with APAR PI20843)

Any hardware. The following is written to stdout:

About 100 0 0 0 16 0 0 0 34 29 114 72 0 0 0 0sitors are
coveredNeed more efforts.

z/OS V2R1 XL C/C++
(without APAR PI20843)

Any hardware. The following is written to stdout:

About 10visitors are covered:Need more efforts.

Earlier z/OS C/C++ Any hardware. The following is written to stdout:

About 10visitors are covered:Need more efforts.

See “Required changes to fprintf and fscanf strings due to new specifiers for vector
types” on page 83.

IEEE754 math functions
As of z/OS V1R9, certain IEEE754 fdlibm math functions are replaced by code
written by IBM Research. Some of those were enhanced to improve performance
and accuracy. The earlier versions are still available. See “Changes in math library
functions” on page 109.

Internal timing algorithm specification
As of z/OS V1R8 XL C/C++ compiler, the internal timing algorithm uses the
_EDC_PTHREAD_YIELD environment variable setting to control the time at which
the processor is released.

If you want to continue to use the previous internal timing algorithm, use the
following command:
_EDC_PTHREAD_YIELD=-1

For information about _EDC_PTHREAD_YIELD and setting environment variables,
see Using environment variables in z/OS XL C/C++ Programming Guide, SC14-7315.

For information about the pthread_yield() and sched_yield() functions, see z/OS
XL C/C++ Runtime Library Reference, SC14-7314.

Daylight saving time definition
If you are using a locale that has been customized wth LC_TOD, you need to be
aware that as of z/OS V1R9, the Language Environment default daylight saving
time (that for the U.S. Eastern time zone) is changed.

To retain the earlier daylight saving time, use either of the following methods:

Chapter 17. Runtime migration issues with earlier z/OS C/C++ applications 107

|
|
|
|
|
|
|
|

|
|

|

||

|||

|
|
||

|
|

|
|
||

|

|||

|
|
|
|

v If the TZ environment variable is defined, reset it to override the default time
zone, which is the U.S. Eastern time zone. TZ is typically set (with the value that
is defined in either the /etc/environment or /etc/profile files) when the
system is started.

v Replace the values in the time_t structure with those saved from your earlier
time.h header file.

Note: The time.h header file contains declarations of all timezone-related
subroutines and externals, as well as the tm structure.

Changes to the putenv() function and POSIX compliance
As of z/OS V1R5 C/C++, the function putenv() places the string passed to
putenv() directly into the array of environment variables. This behavior assures
compliance with the POSIX standard.

Prior to z/OS V1R5 C/C++, the string used to define the environment variable
passed into putenv() was not added to the array of environment variables. Instead,
the system copied the string into system-allocated storage.

To allow the POSIX-compliant behavior of putenv(), do nothing; it’s now the
default condition.

To restore the previous behavior of putenv(), follow these steps:
1. Ensure that the environment variable, _EDC_PUTENV_COPY, is available on

your pre-z/OS V1R5 system.
2. Set the environment variable _EDC_PUTENV_COPY to "YES".

For additional information, see:
v z/OS XL C/C++ Runtime Library Reference

v _EDC_PUTENV_COPY in z/OS XL C/C++ Programming Guide

Internationalization issues
If you are running an application that was last compiled under z/OS V1R2, z/OS
V1R3, or z/OS V1R4, or z/OS V1R5, be aware of the following internationalization
issues:
v “Default daylight saving time change”
v “EEC default currency update” on page 109
v “Movement of LOCALDEF utilities to new data sets” on page 109

Default daylight saving time change
As of z/OS V1R9, the Language Environment default daylight saving time is
changed. Functions that depend on the change to or from daylight saving time will
be executed in accordance with the new default. For example, a function such as
localtime() will use the new default daylight saving time to return the local time.

If you are using a locale that has been customized with the LC_TOD IBM
extension, you can retain the previous daylight saving time. See “Daylight saving
time definition” on page 107.

Note: The LC_TOD IBM extension specifies the rules used to define the beginning,
end, and duration of daylight savings time, and the difference between local time
and Greenwich Mean Time.

108 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

EEC default currency update
Prior to z/OS V1R6, the default currency for EEC was set to local currency in the
LC_MONETARY category of the locale. If you wanted to set Euro as currency, the
@euro locales would need to be set using setlocale().

As of z/OS V1R6, the LC_MONETARY information in the base locale is now
preset to use the Euro, which means that the Euro is the default currency. If you
want your applications to continue using the old (local) currency, you will need to
issue setlocale() with the new @preeuro locale as the parameter.

Behavior of the current @euro locales has not changed.

For z/OS V1R7 to z/OS V1R9, Venezuela is changing its currency from bolivar to
bolivar fuerte. The national currency symbol changes from Bs to BSF, and the
international currency symbol changes from VEB to VEF. If you want to keep using
the old currency symbols, the Bs or VEB (bolivar), you must use setlocale() with a
locale name of "Es_VEO" for the language-territory part, instead of "Es_VE".

As of z/OS V1R9, Malta is adopting the euro currency. If you want to keep using
the old currency symbol, you must use the @preeuro locales.

Movement of LOCALDEF utilities to new data sets
As of z/OS V1R6, the following LOCALDEF utilities have been moved to new
data sets.

Utility From C/C++ data set
To Language Environment
data set

LOCALDEF CBC.SCCNUTL CEE.SCEECLST

EDCLDEF CBC.SCCNPRC CEE.SCEEPROC

EDCXLDEF CEE.SCCNPRC CEE.SCEEPROC

CCNELDEF CBC.SCCNCMP CEE.SCEERUN2

CCNLMSGS CBC.SCCNCMP CEE.SCEERUN2

If you use the MVS batch or TSO localedef (LOCALDEF) utility interfaces, you
might need to do the following:
v Add or replace the Language Environment procedures library (CEE.SCEEPROC)

where you currently have the C/C++ procedures library (CBC.SCCNPRC).
v Add or replace the Language Environment clist/exec library (CEE.SCEECLST)

where you currently have the C/C++ clist/exec library (CBC.SCCNUTL). In
addition, you may need to customize the Language Environment customization
member (CEE.SCEECLST(CEE.CEL4CUST)) in addition to customizing the
C/C++ customization member (CBC.SCCNUTL(CBC.CCNCCUST)).

v Add the Language Environment library CEE.SCEERUN2 (in addition to
CEE.SCEERUN) where you currently have the C/C++ library CBC.SCCNCMP.

Changes in math library functions
As of z/OS V1R9, certain IEEE754 fdlibm math functions are replaced by code
written by IBM Research.

Chapter 17. Runtime migration issues with earlier z/OS C/C++ applications 109

The earlier versions of functions that are more closely aligned with the C99
standard are no longer available. Neither the _IEEEV1_COMPATIBILITY feature
test macro nor the _EDC_IEEEV1_COMPATIBILITY environment variable can be
used to affect these functions.

The earlier versions of functions with performance and accuracy enhancements are
still available. See Table 20 on page 111.

To use earlier versions of the IEEE754 fdlibm math functions, use either of the
following methods:
v When using the FLOAT(IEEE) compiler option, use the

_IEEEV1_COMPATIBILITY feature test macro.
v When variable mode is in effect, use environment variable

_EDC_IEEEV1_COMPATIBILITY_ENV=ON.

Note: Variable mode is in effect under either of the following conditions:
– The _FP_MODE_VARIABLE feature test macro is used.
– The math.h header file is not included.

To modify your source code to use the new performance and accuracy
enhancements, use the information in Table 20 on page 111.

110 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Table 20. IEEE754 fdlibm math functions replaced in z/OS V1R9 XL C/C++

Math functions that are enhanced for
performance and accuracy

Math functions that are replaced but still
available

acos()

acosh()

asin()

asinh()

atan()

atanh()

atan2()

cbrt()

cos()

cosh()

erf()

erfc()

exp()

expm1()

gamma()

hypot()

lgamma()

log()

log1p()

log10()

pow()

rint()

sin()

sinh()

tan()

tanh()

acosl()

asinl()

atanl()

atan2l()

coshl()

cosl()

frexpl()

ldexpl()

log10l()

modfl()

powl()

sinhl()

tanl()

tanhl()

Changes in floating-point support
Changes in hexadecimal floating-point support could produce unexpected results.

Hexadecimal floating-point notation
Changes in support of hexadecimal floating point notation in the numeric
conversion functions introduced in Programming languages - C (ISO/IEC 9899:1999)
can alter the behavior of well-formed applications that comply with the
Programming languages - C (ISO/IEC 9899:1990) standard and earlier versions of the
base documents. One such example would be:

Chapter 17. Runtime migration issues with earlier z/OS C/C++ applications 111

Floating-point special values
The numeric conversion functions accept the following special values at all times:
v ±inf or ±INF
v ±nanq or ±nanq(n-char-sequence), and ±NANQ or ±NANQ(n-char-sequence)
v ±nans or ±nans(n-char-sequence), and ±NANS or ±NANS(n-char-sequence)
v ±nan or ±nan(n-char-sequence), and ±NAN or ±NAN(n-char-sequence)

Note: Neither the z/OS XL C/C++ compiler nor the Language Environment
C/C++ runtime library includes _Imaginary or formal support of the IEC 60559
floating point as described in Annex F and Annex G of the C99 standard.

Changes in allocation of VSAM control blocks
As of z/OS V1R10, the XL C/C++ compiler instructs VSAM, by default, to allocate
control blocks and I/O buffers above the 16-MB line.

If you determine that this change could be causing a problem, you can use the
VSAM JCL parameter AMP to override the default.

Changes to st_mode attribute of AF_UNIX socket files
As of z/OS V2R1, the retrieved file type of AF_UNIX socket files that are returned
in st_mode is S_IFSOCK, rather than S_IFCHR. Functions stat(), lstat(), stat_o(),
lstat_o(), and __readdir2() are affected.

You must examine programs that use the affected functions and check the type of
AF_UNIX socket files to ensure compatibility with the updated function behavior.

int what_kind_of_number (char *s){
char *endp; *EXP = "p+0"
double d;
long l;

d = strtod(s,&endp);
if (s != endp && *endp == `\0’)

printf("It is a float with value %g\n", d); �1�
else{

l = strtol(s,&endp,0);
if (s != endp && (strcmp(endp,EXP)== 0))

printf("It is an integer with value %ld\n", l); �2�
else

return 1;
}
return 0;

}

Notes:

1. If the function is called with: what_kind_of_number ("0xAp+0") and the runtime library is
C99-compliant, the output is: It is a float with value 10.

2. If the function is called with: what_kind_of_number ("0xAp+0") and the runtime library is
not C99-compliant, the output is: It is an integer with value 10 and an exception is
raised.

Figure 23. Example of how C99 changes in hexadecimal floating-point notation affect
well-formed code

112 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Changes to strfmon() output
As of z/OS V2R1, the alignment of formatted output from strfmon() is changed.
When #n and (are specified in the input of strfmon(), the formatted output of
positive and negative values are aligned in the same columns, as required by the
UNIX Standard. This causes the output of a positive value to be wider than in
previous releases.

For example, the input format of strfmon() is %(#5n, which specifies that 5 digits
are expected to be formatted to the left of the radix character and that negative
amounts are enclosed with parentheses. Given a positive value 1234.56 and a
negative value -1234.56, the output of strfmon() is as follows:
[123456]
[(123456)]

Changes to structure t_opthdr in xti.h
As of z/OS V2R1, the member type of structure t_opthdr is changed from
unsigned int to unsigned long, when not compiling with AMODE 64.

Programs that are compiled before this change can still run correctly without being
re-compiled. Warning messages about conversion between unsigned int and
unsigned long might be reported at compile time if a program does not comply
with the new version of structure t_opthdr.

Changes to getting group or user database entry
As of z/OS V2R1, the case of not found database entry is not treated as an error
case. As required by the UNIX standard, when the group or user database entry
that is associated with the specified name or ID is not found, the calling function
will not set errno. The impacted functions are getgrnam(), getpwnam(), and
getgrgid().

To ensure compatibility with the updated behavior, examine your programs that
get database entry by calling changed functions.

Removal of conversion table source code
As of z/OS V1R12, the C/C++ runtime library will no longer ship any ucmap
source code or genxlt source code for character conversions now being performed
by Unicode Services.

Users with customized conversion tables should now generate custom Unicode
Services conversion tables.

Users of the iconv() family of functions testing to a "known conversion result" who
experience testcase failures need to update their expected results to the new
conversion results.

Users wanting to create custom conversion tables involving any of the CCSIDs
related to the conversion table source no longer being shipped should now
generate custom Unicode Services conversion tables instead of custom Language
Environment conversion tables.

The <INSTALLATION PREFIX>.SCEEUMAP data set will no longer be shipped.

Chapter 17. Runtime migration issues with earlier z/OS C/C++ applications 113

The /usr/lib/nls/locale/ucmap HFS directory will no longer be shipped.

Note: The _ICONV_TECHNIQUE environment variable must be set to the same
technique search order value used for the customized Unicode Services table in
order for the iconv() family of functions to use the customized Unicode Services
table. For example, if you want the iconv() family of functions to use a
user-defined Unicode Services table with a technique search order of 2, the
_ICONV_TECHNIQUE environment variable should be set to 2LMREC.

For information about how to generate and use custom Unicode Services
conversion tables, see Support for Unicode: Using Unicode Services, SA22-7649.

114 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 5. ISO Standard C++ compliance migration issues

Programming languages - C++ (ISO/IEC 14882:2003(E)) documents the currently
supported Standard C++.

As of z/OS V1R2 C++, the z/OS C++ compiler was compliant with Programming
languages - C++ (ISO/IEC 14882:1998(E)).

As of z/OS V1R7 XL C/C++:
v z/OS C++ was compliant with Programming languages - C++ (ISO/IEC

14882:2003(E)).
v OS/390 V2R10 compiler was no longer shipped with the z/OS product. This

means that programs compiled with the z/OS C++ compiler must be compliant
with Programming languages - C++ (ISO/IEC 14882:2003(E)) or Programming
languages - C++ (ISO/IEC 14882:1998(E)).

Note: You can determine the ISO Standard level that is supported by the compiler
by checking the standard macro __cplusplus and its value, which remains
unchanged from z/OS V1R6 C++. This macro has the value 199711. If you are
compiling a C ++ translation unit, the name __cplusplus is defined to the value
199711L .

The following topics discuss the implications of migrating applications that were
created with C++ compilers that are not compliant with Programming languages -
C++ (ISO/IEC 14882:2003(E))

v Chapter 18, “Language level and your Standard C++ compliance objectives,” on
page 117

v Chapter 19, “Changes that affect Standard C++ compliance of language
features,” on page 119

© Copyright IBM Corp. 2015 115

116 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 18. Language level and your Standard C++
compliance objectives

Code that compiles without errors in pre-z/OS C++ V1R2 compilers might
produce warnings or error messages in the z/OS V2R2 XL C++ compiler. This
could be due either to changes in the language or to differences in the compiler
behavior. Language elements that may affect your code are shown in Chapter 19,
“Changes that affect Standard C++ compliance of language features,” on page 119.

Table 21 shows the Standard C++ migration objectives and the recommended
approach for each.

Note: Full conformance can be achieved gradually by migrating to selected
individual language features in phases.

Table 21. Standard C++ migration objectives and approaches

Is code compliant with 1998
ISO Standard C++?

Compliance objective Action

Yes (ported or new). Migrate to the 2003 Standard
C++.

No action required.

Remain compliant with 1998
Standard C++.

Use one of the following compiler options and
suboptions:

v LANGLVL(ANSI)

v LANGLVL(STRICT98)

Notes:

1. LANGLVL(ANSI) and LANGLVL(STRICT98)
are synonymous.

2. You can use compiler options to control
individual language features. See the
"Compatability options for z/OS XL C/C++
compiler" table in the LANGLVL description,
z/OS XL C/C++ User's Guide, SC14-7307.

No Use Standard C++ language
features, even if code must be
modified.

Use the following compiler options and
suboptions to aid the migration process:

v LANGLVL(COMPAT92) if your code compiles
with a previous compiler and you want to
move to z/OS V2R2 XL C/C++ with minimal
changes.
Note: This group is the closest you can get to
the behavior of the previous compilers.

v For information about compiler suboptions
that you can use to control individual
language features, refer to "Compatability
options for z/OS(R) XL C/C++ compiler" in
the LANGLVL compiler option description in
z/OS XL C/C++ User's Guide, SC14-7307.

Avoid modifying code and
ignore Standard C++ language
features.

Use LANGLVL(COMPAT92) to tolerate
language incompatibilities.

© Copyright IBM Corp. 2015 117

118 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 19. Changes that affect Standard C++ compliance of
language features

For information about setting the language level to meet your Standard C++
compliance objectives, see Chapter 18, “Language level and your Standard C++
compliance objectives,” on page 117.

Refer to the z/OS XL C/C++ Language Reference, SC14-7308 for details.

Unqualified name lookups and the using directive
As of z/OS V1R10 XL C++ compiler, the location of the using directive determines
how function calls are resolved.

Figure 24 provides an example of code that will be compiled differently by z/OS
V1R10 XL C++ compiler than it was by earlier XL C++ compilers.

Prior to z/OS V1R10 XL C++ compiler, the compiler would resolve the call to the
function sp1 in the namespace bb even though the statement using namespace bb;
is not located before the function is called inside the main routine.

In the example in Figure 24, the declaration of sp1 in the main function is a
declaration in the global namespace. As of z/OS V1R10 XL C++ compiler, the
compiler will resolve that function call to the declaration in the global namespace.
Because the definition of sp1 is missing in the global namespace, the binder will
generate an error message.

To avoid the error at bind time, you can modify the example in Figure 24 in any of
the following ways:
v Explicitly resolve the function call to sp1 in the namespace bb by using the

namespace qualifier in the function call
v Implicitly resolve the function call to sp1 in the namespace bb by moving the

using directive above the main routine.
v Make the function definition available in the global namespace.

For detailed information, refer to The using declaration and namespaces in z/OS
XL C/C++ Language Reference, SC14-7308.

}namespace bb {
double sp1(double) { return 1.0; }

}

int main()
{

double sp1(double);
sp1(0);
return 0;

}
using namespace bb;

Figure 24. Example of code with a using directive

© Copyright IBM Corp. 2015 119

For examples of the using directive in a sample program, see CCNUBRC and
CLB3ATMP.CPP. These are documented in z/OS XL C/C++ User's Guide.

Order of destruction for statically initialized objects
As of z/OS V1R5 C++ compiler, you can use the LANGLVL(NOANSISINIT)
option to maintain the order of destruction for statically initialized objects
whenever you compile programs that had previously been compiled with z/OS
V1R1 and earlier C++ compilers.

As of z/OS V1R2 C++ compiler, DLLs built by the compiler run object destructors
differently from those created with the earlier C++ compilers.

Note: The compiler became fully compliant with the C++ 2003 standard as of
z/OS V1R2 C++ compiler.

Table 22. Destruction of statically initialized objects and compliance with Standard C++

z/OS V1R1 and earlier C++ compilers z/OS V1R2 and later compilers

Destructor calls are run as the last thing on
the atexit list, as part of the termination
code.

For objects created with the Standard C++
way of initializing (LANGLVL(ANSISINIT)):

v Destructor calls for objects created by
z/OS V1R2 and later compilers are added
to the atexit list. This list will then be
run before the atexit entry for the
termination code.

v Any DLL built with z/OS V1R2 and later
compilers will have the destructors for the
global objects run in the wrong order
relative to other DLLs or main program
that were built with z/OS V1R1 and
earlier C++ compilers.

Implicit integer type declarations
The use of an implicit int in a declaration, as shown in Figure 25, does not comply
with Standard C++. If you need to comply with the Standard C++, specify the type
of every function and variable. Otherwise, use the LANGLVL(IMPLICITINT)
option to compile code containing declarations of implicit integer types.

As of z/OS V1R2 C++, the following code is no longer valid:
inline f() {

return 0;
}

Scope of for-loop initializer declarations
In Standard C++, a variable in a for loop initializer declaration is declared within,
and scoped to, the loop body.

const i; // previously meant const int i
main() { } // previously returned int

Figure 25. Declaration of implicit integer type.

120 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

If you are migrating a program that was last compiled by a pre-z/OS V1R2 C++
compiler, you should be aware that such variables were declared outside of the
for-loop, and were scoped to the lexical block containing the for-loop. See
Figure 26.

As of z/OS V1R2 C++ compiler, you can retain the original scope of a for-loop
initializer declaration by specifying the LANGLVL(NOANSIFOR) compiler option.

Visibility of friend declarations
As of the z/OS V1R2 C++ compiler, a friend class is not visible unless it is
introduced into scope by another declaration, as shown in Figure 27. To allow
friend declarations without elaborated class names, use the
LANGLVL(OLDFRIEND) option.

A friend class declaration must always be elaborated, as shown in Figure 28.

Migration of friend declarations in class member lists
A friend declaration in a class member list grants, to the nominated friend
function or class, access to the private and protected members of the enclosing
class. In pre-z/OS V1R2 C++ compilers, friend declarations introduce the name of
a nominated friend function to the scope that encloses the class containing the
friend declaration. As of z/OS V1R2 C++ compiler, friend declarations do not
introduce the name of a nominated friend function to the scope that encloses the
class containing the friend declaration.

The code in Figure 29 on page 122 will not compile successfully because the z/OS
V2R2 XL C/C++ compiler will not know the function name lib_func1 at the point
at which it is called in the function f.

int i=0;

void f() {
for(int i=0; i<10; i++) {

if(...) break;
}
if(i==10) { ... } // �1�
...

}

Note: Prior to z/OS V1R2, the variable i was declared outside the for-loop.

Figure 26. A for-loop initializer declaration that does not comply with Standard C++

class C {
friend class D;

};
D* p; // error, D not in scope

Figure 27. friend declaration that is not visible

friend class C; // need class keyword

Figure 28. friend declaration that is made visible.

Chapter 19. Changes that affect Standard C++ compliance of language features 121

cv-qualifications when the thrown and caught types are the same
As of z/OS V1R2 C++ compiler:
v A temporary copy is thrown rather than the actual object itself.
v The cv-qualification in the catch clause is not considered when one of the

following are true:
– The type caught is the same (possibly cv-qualified) type as that thrown.
– The type caught is a reference to the same (possibly cv-qualified) type.

Note: cv is short form for const/volatile.
v New casts also throw exceptions.

This is not the case in z/OS V1R1 and earlier C++ compilers. As of z/OS V1R5
C++ compiler, there is no available option to enable pre- z/OS V1R2 behavior.

Compiler options that are introduced in C++11 standard
The following topics describe compiler options that are introduced in the C++11
standard as of z/OS V2R1 XL C++ compiler. To make an application conform to
the currently supported C++11 standard, you might need to change your existing
source code.
v “LANGLVL(AUTOTYPEDEDUCTION) compiler option (C++11)” on page 123
v “LANGLVL(C1XNORETURN) compiler option (C++11)” on page 123
v “LANGLVL(C99LONGLONG) compiler option (C++11)” on page 123
v “LANGLVL(C99PREPROCESSOR) compiler option (C++11)” on page 123
v “LANGLVL(CONSTEXPR) compiler option (C++11)” on page 124
v “LANGLVL(DECLTYPE) compiler option (C++11)” on page 124
v “LANGLVL(DEFAULTANDDELETE) compiler option (C++11)” on page 124
v “LANGLVL(DELEGATINGCTORS) compiler option (C++11)” on page 124
v “LANGLVL(EXPLICITCONVERSIONOPERATORS) compiler option (C++11)” on

page 124
v “LANGLVL(EXTENDED0X) compiler option” on page 94
v “LANGLVL(EXTENDEDFRIEND) compiler option (C++11)” on page 124
v “LANGLVL(EXTENDEDINTEGERSAFE) compiler option (C++11)” on page 125

// g.C
// ---
class A {

friend int lib_func1(int); // This function is from a library.
};
�1�
int f(){

return lib_func1(1);
}

Note: The code in Figure 29 will compile successfully if the following declaration is added
to the file in the global namespace scope at some point prior to the definition of the function
named f:

int lib_func1(int);

Figure 29. Example of code that does not introduce a friend function

122 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

v “LANGLVL(EXTERNTEMPLATE) compiler option (C++11)” on page 125
v “LANGLVL(INLINENAMESPACE) compiler option (C++11)” on page 125
v “LANGLVL(REFERENCECOLLAPSING) compiler option (C++11)” on page 125
v “LANGLVL(RIGHTANGLEBRACKET) compiler option (C++11)” on page 125
v “LANGLVL(RVALUEREFERENCES) compiler option (C++11)” on page 126
v “LANGLVL(SCOPEDENUM) compiler option (C++11)” on page 126
v “LANGLVL(STATIC_ASSERT) compiler option (C++11)” on page 126
v “LANGLVL(VARIADICTEMPLATES) compiler option (C++11)” on page 126
v “WARN0X compiler option (C++11)” on page 126

Note: C++11 is a new version of the C++ programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C++11 standard is
complete, including the support of a new C++ standard library, the implementation
may change from release to release. IBM makes no attempt to maintain
compatibility, in source, binary, or listings and other compiler interfaces, with
earlier releases of IBM's implementation of the new features of the C++11 standard
and therefore they should not be relied on as a stable programming interface.

LANGLVL(AUTOTYPEDEDUCTION) compiler option (C++11)
This option controls whether the auto type deduction feature is enabled. When
LANG(AUTOTYPEDEDUCTION) is in effect, you do not need to specify a type
when declaring a variable. Instead, the compiler deduces the type of an auto
variable from the type of its initializer expression. The default is
LANG(NOAUTOTYPEDEDUCTION). For detailed information, see
AUTOTYPEDEDUCTION | NOAUTOTYPEDEDUCTION that is documented in
z/OS XL C/C++ User's Guide.

LANGLVL(C1XNORETURN) compiler option (C++11)
This option controls whether the _Noreturn function specifier is supported. The
default is LANGLVL(NOC1XNORETURN). For detailed information, see
C1XNORETURN | NOC1XNORETURN that is documented in z/OS XL C/C++
User's Guide.

LANGLVL(C99LONGLONG) compiler option (C++11)
This option controls whether the feature of C99 long long with IBM extensions
adopted in C++11 is enabled. When LANG(C99LONGLONG) is in effect, the C++
compiler provides the C99 long long with IBM extensions feature. Source
compatibility between the C and the C++ language is improved. The default is
LANG(NOC99LONGLONG). For detailed information, see C99LONGLONG |
NOC99LONGLONG that is documented in z/OS XL C/C++ User's Guide.

LANGLVL(C99PREPROCESSOR) compiler option (C++11)
This option controls whether the C99 preprocessor features adopted in C++11 are
enabled. When LANG(C99PREPROCESSOR) is in effect, C99 and C++11 compilers
provide a common preprocessor interface, which can ease the porting of C source
files to the C++ compiler and avoid preprocessor compatibility issues. The default
is LANG(NOC99PREPROCESSOR). For detailed information, see
C99PREPROCESSOR | NOC99PREPROCESSOR that is documented in z/OS XL
C/C++ User's Guide.

Chapter 19. Changes that affect Standard C++ compliance of language features 123

LANGLVL(CONSTEXPR) compiler option (C++11)
This option controls whether the generalized constant expressions feature is
enabled. When you specify the LANGLVL(CONSTEXPR) option, the compiler
extends the expressions permitted within constant expressions. A constant
expression is one that can be evaluated at compile time. The default option is
LANGLVL(NOCONSTEXPR). For detailed information, see CONSTEXPR |
NOCONSTEXPR that is documented in z/OS XL C/C++ User's Guide.

LANGLVL(DECLTYPE) compiler option (C++11)
This option controls whether the declaration type feature is enabled. When
LANG(DECLTYPE) is in effect, you can get a type that is based on the resultant
type of a possibly type-dependent expression. The default is
LANG(NODECLTYPE). For detailed information, see DECLTYPE | NODECLTYPE
that is documented in z/OS XL C/C++ User's Guide.

LANGLVL(DEFAULTANDDELETE) compiler option (C++11)
This option controls whether the defaulted and deleted functions feature is
enabled. With this feature, you can define explicitly defaulted functions whose
implementations are generated by the compiler to achieve higher efficiency. You
can also define deleted functions whose usages are disabled by the compiler to
avoid calling unwanted functions. The default is
LANGLVL(NODEFAULTANDDELETE). For detailed information, see
DEFAULTANDDELETE | NODEFAULTANDDELETE that is documented in z/OS
XL C/C++ User's Guide.

LANGLVL(DELEGATINGCTORS) compiler option (C++11)
This option controls whether the delegating constructors feature is enabled. When
LANG(DELEGATINGCTORS) is specified, you can concentrate common
initializations and post initializations in one constructor, which improves the
readability and maintainability of the program. The default is
LANG(NODELEGATINGCTORS). For detailed information, see
DELEGATINGCTORS | NODELEGATINGCTORS that is documented in z/OS
XL C/C++ User's Guide.

LANGLVL(EXPLICITCONVERSIONOPERATORS) compiler
option (C++11)

This option controls whether the explicit conversion operators feature is enabled.
When you specify the LANGLVL(EXPLICITCONVERSIONOPERATORS) option,
you can apply the explicit function specifier to the definition of a user-defined
conversion function, and thus to inhibit unintended implicit conversions through
the user-defined conversion function. The default is
LANG(NOEXPLICITCONVERSIONOPERATORS). For detailed information, see
EXPLICITCONVERSIONOPERATORS |
NOEXPLICITCONVERSIONOPERATORS that is documented in z/OS XL C/C++
User's Guide.

LANGLVL(EXTENDEDFRIEND) compiler option (C++11)
Extended friend declarations which relax syntax rules governing friend
declarations are supported by the new standard C++11. This feature is enabled by
the new LANGLVL(EXTENDEDFRIEND) compiler option, which can also be
enabled by the group option LANGLVL(EXTENDED0X). Otherwise, the feature is
disabled by LANGLVL(NOEXTENDEDFRIEND). The default is
LANGLVL(NOEXTENDEDFRIEND).

124 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

As of z/OS V1R11, when either LANGLVL(EXTENDEDFRIEND) or
LANGLVL(EXTENDED0X) compiler option is turned on, the
__IBMCPP_EXTENDED_FRIEND macro is defined with the value '1' by the
compiler, and is undefined otherwise. For detailed information, see
EXTENDEDFRIEND | NOEXTENDED0XFRIEND that is documented in z/OS XL
C/C++ User's Guide.

LANGLVL(EXTENDEDINTEGERSAFE) compiler option (C++11)
With this option, if a decimal integer literal that does not have a suffix containing
u or U cannot be represented by the long long int type, you can decide whether to
use the unsigned long long int to represent the literal or not. The default is
LANG(NOEXTENDEDINTEGERSAFE). For detailed information, see
EXTENDEDINTEGERSAFE | NOEXTENDEDINTEGERSAFE that is documented
in z/OS XL C/C++ User's Guide.

LANGLVL(EXTERNTEMPLATE) compiler option (C++11)
Explicit instantiation declarations provide you with the ability to suppress implicit
instantiations of a template specialization or its members when the
LANGLVL(EXTERNTEMPLATE) option is turned on. It can also be enabled by the
group options LANGLVL(EXTENDED) or LANGLVL(EXTENDED0X). This feature
is disabled when LANGLVL(NOEXTERNTEMPLATE) is set. The default is
LANGLVL(EXTERNTEMPLATE).

As of z/OS V1R11, when LANGLVL(EXTERNTEMPLATE) is set, the macro
__IBMCPP_EXTERN_TEMPLATE is defined as the preprocessing number 1, and is
undefined otherwise. In both cases, the macro is protected and a compiler warning
will be emitted if it is undefined or redefined. For detailed information, see
EXTERNTEMPLATE | NOEXTERNTEMPLATE that is documented in z/OS XL
C/C++ User's Guide.

LANGLVL(INLINENAMESPACE) compiler option (C++11)
This option controls whether the inline namespace definitions are enabled. A
namespace definition preceded by an initial inline keyword is defined as an inline
namespace. When LANG(INLINENAMESPACE) is in effect, members of the inline
namespace can be defined and specialized as if they were also members of the
enclosing namespace. The default is LANG(NOINLINENAMESPACE). For detailed
information, see INLINENAMESPACE | NOINLINENAMESPACE that is
documented in z/OS XL C/C++ User's Guide.

LANGLVL(REFERENCECOLLAPSING) compiler option (C++11)
This option controls whether the reference collapsing feature is enabled. The
default option is LANGLVL(NOREFERENCECOLLAPSING). For detailed
information, see REFERENCECOLLAPSING | NOREFERENCECOLLAPSING
that is documented in z/OS XL C/C++ User's Guide.

LANGLVL(RIGHTANGLEBRACKET) compiler option (C++11)
This option controls whether the right angle bracket feature is enabled. The default
option is LANGLVL(NORIGHTANGLEBRACKET). For detailed information, see
RIGHTANGLEBRACKET | NORIGHTANGLEBRACKET that is documented in
z/OS XL C/C++ User's Guide.

Chapter 19. Changes that affect Standard C++ compliance of language features 125

LANGLVL(RVALUEREFERENCES) compiler option (C++11)
This option controls whether the rvalue references feature is enabled. The default
option is LANGLVL(NORVALUEREFERENCES). For detailed information, see
RVALUEREFERENCES | NORVALUEREFERENCES that is documented in z/OS
XL C/C++ User's Guide.

LANGLVL(SCOPEDENUM) compiler option (C++11)
This option controls whether the scoped enumeration feature is enabled. The
default option is LANGLVL(NOSCOPEDENUM). For detailed information, see
SCOPEDENUM | NOSCOPEDENUM that is documented in z/OS XL C/C++
User's Guide.

LANGLVL(STATIC_ASSERT) compiler option (C++11)
This option controls whether the static assertions feature is enabled. When
LANGLVL(STATIC_ASSERT) is set, a severe error message for compile-time
assertions is issued on failure. The default is LANG(NOSTATIC_ASSERT). For
detailed information, see STATIC_ASSERT | NOSTATIC_ASSERT that is
documented in z/OS XL C/C++ User's Guide.

LANGLVL(VARIADICTEMPLATES) compiler option (C++11)
This option controls whether the variadic templates feature is enabled. When
LANGLVL(VARIADICTEMPLATES) is set, you can define class and function
templates that have any number (including zero) of parameters. The default is
LANG(NOVARIADICTEMPLATES). For detailed information, see
VARIADICTEMPLATES | NOVARIADICTEMPLATES that is documented in
z/OS XL C/C++ User's Guide.

WARN0X compiler option (C++11)
The compiler option WARN0X controls whether to inform users with messages
about differences in their programs caused by the migration from C++98 standard
to C++11 standard. The default is NOWARN0X. For detailed information, see
WARN0X | NOWARN0X that is documented in z/OS XL C/C++ User's Guide.

Errors due to changes in compiler behavior
This topic describes coding that compiles without errors in z/OS V1R1 and earlier
C/C++ compilers but produces errors or warnings as of z/OS V1R7 XL C/C++
compiler. For more details on compiler messages, refer to z/OS XL C/C++ Messages,
GC14-7305.

C++ class access errors
If your code has not been updated since z/OS V1R2, compiling it could raise
exceptions because of changes in Standard C++ compliance. See “CCN5413
exception” and “CCN5193 exception” on page 127.

CCN5413 exception
An access specifier determines the accessibility of members that follow it, either
until the next access specifier or until the end of the class definition. Violation of
this rule will result in the following error message:
CCN5413:"A::B" is already declared with a different access

If you later define a class member within its class definition, its access specification
must be the same as its declaration. The code in Figure 30 on page 127 violates this

126 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

rule.

CCN5193 exception
When you specify a friend within a class, you must use the class name instead of
the type-definition name. Without modification, the code in Figure 31 would result
in the following error message:
CCN5193: A typedef name cannot be used in this context

Exceptions caused by ambiguous overloads
Programming languages - C (ISO/IEC 9899:2003) introduced error messages for
standard floating point and long double overloads of standard math functions.

As of z/OS V1R2 C++ compiler, compiling the code in Figure 32 will produce the
following error message:
CCN5219: The call to "pow" has no best match

To handle the exception, you could specify the LANGLVL(OLDMATH) option,
which removes the float and long double overloads. If you don't want to remove
the overloads, you can modify the code by casting the pow arguments.

class A {
public:

class B;
private:

class B {}; �1�
};

Note: The compiler will not allow the definition of class B because this class has already
been declared as private. To correct the program, remove the private keyword.

Figure 30. Code that results in CCN5413 exceptions

class A { };
typedef A B;
class C {

friend class B; �1�
};

Note: Do not use the type-definition name; instead, use the name of the class:

friend class A;

Figure 31. Example: Correcting a type-definition name used out of context

#include <math.h>
int main()
{

float a = 137;
float b;
b = pow(a, 2.0); �1�
return 0;

}

Note: The call to pow has no best match. To fix the problem, cast 2.0 to be of type float:

b = pow(a, (float)2.0);

Figure 32. Code modification to handle CCN5219 exception

Chapter 19. Changes that affect Standard C++ compliance of language features 127

Exceptions caused by user-defined conversions
User-defined conversions must be unambiguous, or they are not called.

Error messages: Error messages are listed below.
CCN5216: An expression of type B cannot be converted to A.
CCN5219: The call to “A::A” has no best match.
CCN6228: Argument number 1 is an lvalue of type “B”.
CCN6202: No candidate is better than “A::A(const A&)”.
CCN6231: The conversion from argument number 1 to “const A &” uses the
user-defined conversion “B::operator A() const” followed by an
lvalue-to-rvalue transformation.
CCN6202: No candidate is better than “A::A(const C &)”.
CCN6231: The conversion from argument number 1 to “const C &” uses the
user-defined conversion “B::operator C() const ”.

Potential solutions: Possible solutions are listed below.
v Changing f((A)b) to the explicit call f(b.operator A())

v Removing the constructor A(const C &)

v Adding a constructor A(B)

v Removing either operator A() or operator C()

Note: The solution you choose depends on your access to classes A and B.

Issues caused by the use of incomplete types in
exception-specifications

A type that is denoted in an exception-specification should not denote an
incomplete type. Otherwise, the compiler will diagnose with a severe error where
there is an incomplete class type, and an error message is produced. For example:
struct MyExcept;
void f1() throw (MyExcept);

The compiler is required to produce a diagnostic.

The requirement for a complete class means that templates might be instantiated.
For example:

//e.C
struct C {};
struct A {

A();
A(const C &);
A(const A &);

};
struct B {

operator A() const { A a ; return a;};
operator C() const { C c ; return c;};

};
void f(A x) {};
int main(){

B b;
f((A)b); // The call matches two constructors for A instead of calling operator A()
return 0;

}

Figure 33. Ambiguous user-defined conversions

128 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

template <unsigned N>
struct A {

__static_assert(N != 0, "Error");
};

void f2() throw (A<0>);

The template specialization A<0> is instantiated from the definition of the primary
template, resulting in a static assertion error.

Syntax errors with array new
Prior to z/OS V1R2, C/C++ compilers treated the following two statements as
semantically equivalent:

new (int *) [1]; //*Syntactially incorrect statement
new int* [1];

The first statement is syntactically incorrect even in older versions of the C++
Standard. However, previous versions of C++ accepted it.

As of z/OS V1R2, the C/C++ compiler will produce a compilation error message
that specifies the syntactically incorrect statement.

Chapter 19. Changes that affect Standard C++ compliance of language features 129

130 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 6. Migration issues for C/C++ applications that use other
IBM products

The following topics provide information about migration issues resulting from
enhancements to the interoperability between XL C/C++ and the other products:
v Chapter 20, “Migration issues with earlier C/C++ applications that run CICS

statements,” on page 133
v Chapter 21, “Migration issues with earlier C/C++ applications that use DB2,” on

page 139

© Copyright IBM Corp. 2015 131

132 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 20. Migration issues with earlier C/C++ applications
that run CICS statements

This topic provides information about:
v “Migration of CICS statements from pre-OS/390 C/C++ applications”
v “Migration of CICS statements from earlier XL C/C++ applications” on page 135

Migration of CICS statements from pre-OS/390 C/C++ applications
When you are migrating applications or programs with CICS statements from
pre-OS/390 C/C++ applications, be aware of changes and constraints in the
following areas:
v “CICS statement translation options”
v “HEAP option used with the interface to CICS”
v “User-developed exit routines”
v “Multiple libraries under CICS”

CICS statement translation options
As of z/OS V1R7 XL C/C++ compiler, there is an new option for translating CICS
statements into C or C++ code: the z/OS XL C/C++ compiler integrated CICS
translator. The standalone CICS translator remains a translation option. For
information about when to use the new option, refer to Translating and compiling
for reentrancy in z/OS XL C/C++ Programming Guide, SC14-7315.

HEAP option used with the interface to CICS
In C/370 V2, the location of heap storage under CICS was primarily determined
by the residence mode (RMODE) of the program.

With Language Environment services, heap storage is determined only by the
HEAP(,,ANYWHERE|BELOW) options. RMODE does not affect where the heap is
allocated. If the location of heap storage is important, you might want to change
the source code accordingly.

User-developed exit routines
With Language Environment services in a CICS environment, abnormal
termination exit routine CEECDATX is automatically linked at installation time.

This change affects you if you have supplied, or need to supply, your own exit
routine. The sample exit routine had been available in the sample library provided
with AD/Cycle LE/370 V1R3. It automatically generates a system dump (with
abend code 4039) whenever an abnormal termination occurs.

You can modify CEECDATX to suppress the dumps. CEECDATX is available in a
z/OS V2R2 XL C/C++ runtime library.

Multiple libraries under CICS
You cannot run two different sets of runtime services within one CICS region.

© Copyright IBM Corp. 2015 133

Both the C/370 V2 CICS interface (EDCCICS) and the Language Environment
CICS interface could be present in a CICS system through CEDA/PPT definitions
and inclusion of modules in the APF STEPLIB. If both interfaces are present, the
Language Environment interface will be initialized by CICS when the region is
initialized.

You should be aware of changes and constraints in the following areas:
v “CICS abend codes and messages”
v “CICS reason codes”
v “Standard stream support under CICS”
v “Changes in stderr output under CICS” on page 135
v “Transient data queue names under CICS” on page 135

CICS abend codes and messages
As of z/OS V1R7 XL C/C++ compiler, when you use the CICS option to compile
programs with embedded CICS statements, the compiler will issue messages
whenever it detects a syntax error before a CICS statement is fully parsed. After a
CICS statement is fully parsed, CICS will issue any required messages as described
in CICS Messages and Codes. The compiler will prepend these CICS messages with
product and line numbers and then merge them with the other compiler messages
in a single message area.

Abend codes (for example, ACC2) that were used by C/370 V2 under CICS are not
issued; the equivalent Language Environment abend code (for example, 4nnn) is
issued instead.

Default option for ABTERMENC changed to ABEND
As of OS/390 V2R9, the default option for ABTERMENC is ABEND instead of
RETCODE. If you are expecting the default behavior of ABTERMENC to be
RETCODE, you must change the setting in CEECOPT. For details on changing
CEECOPT, refer to z/OS Language Environment Customization, SA38-0685.

CICS reason codes
Reason codes that appeared in the CICS message console log have been changed.
The current codes are documented in z/OS Language Environment Debugging Guide.

Standard stream support under CICS
With Language Environment services, CICS records sent to the transient data
queues associated with stdout and stderr with default settings take the format of
the message shown in Figure 34 on page 135.

134 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

With Language Environment services, CICS records are sent in this format,
whether they are directed to the transient data queues associated with stdout and
stderr. You should be aware of this change if you are migrating to z/OS V2R2 XL
C/C++ compiler, because, previously, this message format had been used for
messages directed to the data queue associated with stdout only.

Changes in stderr output under CICS
Output from stderr is sent to the CICS transient data queue, CESE, which is also
used for Language Environment runtime error messages, dumps, and storage
reports. If you previously used this file exclusively for C/370 stderr output, you
should note that the output might be different than you expect.

Transient data queue names under CICS
Table 23C/370 transient data queue names are mapped to Language Environment
transient data queue names:

Table 23. Transient data queue names under CICS

C/370 name Language Environment name

CCSI CESI

CCSO CESO

CCSE CESE

Migration of CICS statements from earlier XL C/C++ applications
When you are migrating applications or programs with CICS statements from
earlier C/C++ applications, be aware of the following possibilities:
v “CICS TS V4.1 with "Extended MVS Linkage Convention"” on page 136
v “Customized CEECCSD.COPY and CEECCSDX.COPY files and iconv() changes”

on page 136

ASA
terminal

id
transaction

id
sp Time Stamp

YYYYMMDDHHMMSS
sp data

1 4 4 1 14 1 108

where:

ASA is the carriage-control character

terminal id
is a 4-character terminal identifier

transaction id
is a 4-character transaction identifier

sp is a space

Time Stamp
is the date and time displayed in the format YYYYMMDDHHMMSS

data is the data sent to the standard streams stdout and stderr.

Figure 34. 1 ASA 4 terminal ID 4 transaction ID 1 sp 14 time stamp 1 sp 108 data

Chapter 20. Migration issues with earlier C/C++ applications that run CICS statements 135

CICS TS V4.1 with "Extended MVS Linkage Convention"

The FLOAT(AFP) compiler option instructs the compiler to generate code that uses
the full complement of 16 floating-point registers (FPRs). The four original
floating-point registers are numbered FPR0, FPR2, FPR4, and FPR6; the additional
floating-point (AFP) registers are numbered FPR 1, FPR 3, FPR 5, FPR 7 and FPRs
8 through 15. By convention, FPRs 1, 3, 5, and 7 are always volatile. This means
that any called routine could change their values without saving and restoring the
original values. However, FPRs 8 through 15 are considered non-volatile by the
caller.

In z/OS V1R9 XL C/C++ compiler (and later compilers), FLOAT(AFP) supports
the VOLATILE | NOVOLATILE suboption. The default is NOVOLATILE; the
compiler assumes that any called subroutines will preserve the values in registers
FPRs 8 through 15. It is safe to use NOVOLATILE in most environments, including
batch. However, CICS environments prior to CICS TS V4.1 use FPRs 7 through 15
to perform their own task switching. Therefore, you need to specify the
FLOAT(AFP(VOLATILE)) option to instruct the compiler to treat FPRs 8 through
15 as volatile.

As of CICS TS V4.1, CICS TS fully supports MVS Linkage conventions. Therefore,
if you are compiling floating point code to be run on CICS TS V4.1, you no longer
need to use the FLOAT(AFP(VOLATILE)) option.

Customized CEECCSD.COPY and CEECCSDX.COPY files and
iconv() changes

As of z/OS V1R9, load modules for iconv() converters have been renamed in the
two CICS sample files CEECCSD.COPY and CEECCSDX.COPY. If your
CEECCSD.COPY and CEECCSDX.COPY files have been customized, you need to
rename the affected load module entries. Otherwise, the iconv_open() and
iconv_close() functions cannot distinguish between a customer-created converter
and a converter shipped with the Language Environment element.

Language Environment converters are:
v Direct converters (including GENXLT, C and Direct Unicode Converters).
v Indirect Binary converter tables (shipped in <hlq>.SCEEUTBL).
v Indirect Binary converter tables (shipped in the HFS).

Renaming direct converters
The Direct converters are shipped as load modules in <hlq>.SCEERUN for 31-bit
base code, and in <hlq>.SCEERUN2 for XPLINK and 64-bit base code.

Direct converters for 31-bit base code: Prior to z/OS V1R9, direct converters for
31-bit base code are shipped as load modules in <hlq>.SCEERUN with a four
character prefix of either CEUU or EDCU, with an alias defined for the unshipped
prefix. For example, if a given converter’s load module has a name of CEUUxxxx,
it will also have an alias of EDCUxxxx.

Change the prefix for all 31-bit base direct converters to CEUL. An alias prefix will
not be required. In other words:
v A direct converter that was named EDCUxxxx in <hlq>.SCEERUN with an alias

of CEUUxxxx will be named CEULxxxx in <hlq>.SCEERUN without an alias.
v A direct converter that was named CEUUxxxx in <hlq>.SCEERUN with an alias

of EDCUxxxx will be named CEULxxxx in <hlq>.SCEERUN without an alias.

136 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Direct converters for XPLINK processing: Direct converters for XPLINK
processing are shipped as load modules in <hlq>.SCEERUN2 with a four character
prefix of CEHU. Change the load module prefix for all direct converters for
XPLINK to CEHL. In other words, a direct converter that was named CEHUxxxx
in <hlq>.SCEERUN2 will be named CEHLxxxx in <hlq>.SCEERUN2.

Direct converters for 64-bit base code: Direct converters for 64-bit base code are
shipped as load modules in <hlq>.SCEERUN2 with a four character prefix of
CEQU. Change the load module prefix for all 64-bit direct converters to CEQL. In
other words, a direct converter that was named CEQUxxxx in <hlq>.SCEERUN2
will be named CEQLxxxx in <hlq>.SCEERUN2.

Renaming indirect binary converter tables
Prior to z/OS V1R9, the indirect binary converter tables (ucmap binaries) were
shipped in <hlq>.SCEEUTBL with a prefix of EDCU or CEUU, with aliases CEHU
for XPLINK and CEQU for 64-bit programs. Change the prefix name for the ucmap
binary converter tables in <hlq>.SCEEUTBL to CEUL, with alias name prefixes of
CEHL for XPLINK and CEQL for 64-bit base code. In other words, an indirect
binary converter table that was named EDCUxxxx in <hlq>.SCEEUTBL will be
named CEULxxxx, with alias names of CEHLxxxx and CEQLxxxx.

Renaming HFS indirect binary converter tables
As of z/OS V1R9, the indirect binary converter tables (ucmap binaries) shipped in
the HFS directory /usr/lib/nls/locale/uconvTable are named with a suffix of
.libcnvtbl. Add the suffix libcnvtbl to the names of all ucmap binary converter
tables in the HFS directory /usr/lib/nls/locale/uconvTable. In other words, an
indirect binary converter table currently named IBM-xxxxx will be renamed to
IBM-xxxxx.libcnvtbl.

Chapter 20. Migration issues with earlier C/C++ applications that run CICS statements 137

138 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 21. Migration issues with earlier C/C++ applications
that use DB2

When you are migrating C/C++ applications that use IBM DB2 services, be aware
of the removal of the Database Access Class Library utility.

In addition, beware of the following information:
v “Namespace violations and SQL coprocessor-based compilations”
v “Potential need to specify DBRMLIB with the SQL option” on page 141

Related information: See the following related information.
v For more information about the IBM XL C/C++ DB2 coprocessor, refer to "Using

the XL C/C++ DB2 coprocessor" in z/OS XL C/C++ Programming Guide.
v For detailed information about using these macros with the SQL option, refer to

SQL | NOSQL in z/OS XL C/C++ User's Guide.
v For DB2-supplied documentation, see http://publib.boulder.ibm.com/

infocenter/db2luw/v8/.

Namespace violations and SQL coprocessor-based compilations
As of z/OS V1R10 XL C/C++ compiler, when you use the SQL option for SQL
coprocessor-based compilations, you can modify your source code to handle an
error condition that would result from using an identifer that has the same name
as one of the new predefined but unprotected macros added in this release. The
names of unprotected macros are in the preprocessing namespace.

Note: Typically, C/C++ compilers treat predefined, unprotected macros as if the
source code had been preprocessed with a #define directive (such as #define
SQL_VARBINARY_INIT(s) {sizeof(s)-1, s}).

The XL C/C++ compiler recognizes the following macros as predefined but
unprotected:
v SQL_VARBINARY_INIT
v SQL_BLOB_INIT
v SQL_CLOB_INIT
v SQL_DBCLOB_INIT

For example, if you use the z/OS V2R2 XL C/C++ compiler to compile the source
code shown in Figure 35 with the SQL option, a message will inform you that the
macro is already defined.

Note: If you use a pre-z/OS V1R10 compiler, you will get undetermined results.

To avoid the error condition you can:

--- test.c ---
#define SQL_VARBINARY_INIT 1
--- end test.c ---

Figure 35. Sample source code

© Copyright IBM Corp. 2015 139

http://publib.boulder.ibm.com/infocenter/db2luw/v8/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

v Perform a macro definition check and handle the error condition, as shown in
Figure 36.

v Explicitly undefine the macro, as shown in Figure 38.

Example: Performing a macro definition check
If you run a macro definition check on the SQL_ . . . _INIT identifier, you can
specify a preprocessing path that is based on the return code generated by the
check.

For example:
v Compiling the code in Figure 36 with the SQL option, and then running it,

would generate a return code of "55" if the compiler is z/OS V1R10 XL C/C++
or later, and "66" if a previous version of the compiler is used.

v Compiling the code in Figure 37 with the SQL option, and then running it,
would generate a return code of "55".

Example: Explicitly undefining and redefining a macro
The code in Figure 38 will always be compiled successfully with or without the
SQL option because it is completely valid for users to undefine and redefine the
various SQL_*_INIT macros.

--- test.c ---
#ifdef SQL_VARBINARY_INIT

int a = 55;
#else

int a = 66;
#endif

int main(void) {
return a;

}
--- end test.c ---

Figure 36. Portable macro definition check

EXEC SQL INCLUDE SQLCA;

int main(void) {
EXEC SQL BEGIN DECLARE SECTION;
#ifdef SQL_VARBINARY_INIT
SQL TYPE IS VARBINARY(100) myvar = SQL_VARBINARY_INIT("abc");
#else
SQL TYPE IS VARBINARY(100) myvar = {sizeof("abc")-1, "abc"};
#endif
EXEC SQL END DECLARE SECTION;
return 55;
}

Figure 37. Macro definition check and compiler invocation

--- test.c ---
#undef SQL_VARBINARY_INIT
#define SQL_VARBINARY_INIT 1
--- end test.c ---

Figure 38. Explicitly undefining a macro

140 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Potential need to specify DBRMLIB with the SQL option

As of z/OS V1R9 XL C/C++ compiler, it is not necessary to specify the DBRMLIB
option with the SQL option. For information about using these options, see z/OS
XL C/C++ User's Guide.

When your source code has embedded SQL statements, you need to use DBRMLIB
with SQL only when the specified APARs have been applied to z/OS V1R8 XL C
with APAR PK38679.

For more information about using SQL statements, refer to DB2 Application
Programming and SQL Guide. Useful topics include:
v "Processing SQL statements by using the DB2 coprocessor"
v "Preparing an external SQL procedure by using JCL" (lists the external SQL

procedure samples shipped with DB2).

Note: The PHASEID compiler option shows the latest PTF that has been applied
to the compiler. For detailed information, refer to PHASEID compiler option in
z/OS XL C/C++ User's Guide, SC14-7307.

Chapter 21. Migration issues with earlier C/C++ applications that use DB2 141

142 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 7. Appendixes

© Copyright IBM Corp. 2015 143

144 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Appendix. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 2015 145

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

146 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix. Accessibility 147

148 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2015 149

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

150 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write z/OS XL C/C++ programs.

Standards
The following standards are supported in combination with the Language
Environment element:
v The C language is consistent with Programming languages - C (ISO/IEC 9899:1999)

and a subset of Programming languages - C (ISO/IEC 9899:2011). For more
information on ISO, visit their website at http://www.iso.org.

v The C++ language is consistent with Programming languages - C++ (ISO/IEC
14882:1998), Programming languages - C++ (ISO/IEC 14882:2003(E)), and a subset
of Programming languages - C++ (ISO/IEC 14882:2011).

The following standards are supported in combination with the Language
Environment and z/OS UNIX System Services elements:
v A subset of IEEE Std. 1003.1-2001 (Single UNIX Specification, Version 3). For more

information on IEEE, visit their website at http://www.iso.org.
v IEEE Std 1003.1—1990, IEEE Standard Information Technology—Portable Operating

System Interface (POSIX)—Part 1: System Application Program Interface (API) [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

v The core features of IEEE P1003.1a Draft 6 July 1991, Draft Revision to Information
Technology—Portable Operating System Interface (POSIX), Part 1: System Application
Program Interface (API) [C Language], copyright 1992 by the Institute of Electrical
and Electronic Engineers, Inc.

v IEEE Std 1003.2—1992, IEEE Standard Information Technology—Portable Operating
System Interface (POSIX)—Part 2: Shells and Utilities, copyright 1990 by the
Institute of Electrical and Electronic Engineers, Inc.

v The core features of IEEE Std P1003.4a/D6—1992, IEEE Draft Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System Application
Program Interface (API)—Amendment 2: Threads Extension [C language], copyright
1990 by the Institute of Electrical and Electronic Engineers, Inc.

Notices 151

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.iso.org
http://www.iso.org

v The core features of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), copyright 1985 by the Institute of Electrical and Electronic
Engineers, Inc.

v X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2,
copyright 1994 by The Open Group

v X/Open CAE Specification, Networking Services, Issue 4, copyright 1994 by The
Open Group

v X/Open Specification Programming Languages, Issue 3, Common Usage C, copyright
1988, 1989, and 1992 by The Open Group

v United States Government's Federal Information Processing Standard (FIPS)
publication for the programming language C, FIPS-160, issued by National Institute
of Standards and Technology, 1991

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of
others.

152 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

This bibliography lists the publications for IBM products that are related to z/OS
XL C/C++. It includes publications covering the application programming task.
The bibliography is not a comprehensive list of the publications for these products,
however, it should be adequate for most z/OS XL C/C++ users. Refer to z/OS
V2R2 Information Roadmap, SA23-2299, for a complete list of publications belonging
to the z/OS product.

z/OS
v z/OS V2R2 Introduction and Release Guide, GA32-0887

v z/OS Planning for Installation, GA32-0890

v z/OS Summary of Message and Interface Changes, SA23-2300

v z/OS V2R2 Information Roadmap, SA23-2299

v z/OS V2R2 Licensed Program Specifications, GA32-0888

v z/OS V2R2 Migration, GA32-0889

v z/OS Program Directory, GI11-9848

z/OS XL C/C++
v z/OS XL C/C++ Programming Guide, SC14-7315

v z/OS XL C/C++ User's Guide, SC14-7307

v z/OS XL C/C++ Language Reference, SC14-7308

v z/OS XL C/C++ Messages, GC14-7305

v z/OS XL C/C++ Runtime Library Reference, SC14-7314

v z/OS C Curses, SA38-0690

v z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application
Programmer, GC14-7306

v Standard C++ Library Reference, SC14-7309

z/OS Metal C Runtime Library
v z/OS Metal C Programming Guide and Reference, SC14-7313

z/OS Runtime Library Extensions
v z/OS Common Debug Architecture User's Guide, SC14-7310

v z/OS Common Debug Architecture Library Reference, SC14-7311

v DWARF/ELF Extensions Library Reference, SC14-7312

Debug Tool
v Debug Tool documentation, which is available at http://www.ibm.com/

software/awdtools/debugtool/library/.

z/OS Language Environment
v z/OS V2R1.0 Language Environment Concepts Guide, SA38-0687

v z/OS Language Environment Customization, SA38-0685

v z/OS Language Environment Debugging Guide, GA32-0908

v z/OS Language Environment Programming Guide, SA38-0682

v z/OS Language Environment Programming Reference, SA38-0683

© Copyright IBM Corp. 2015 153

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/software/awdtools/debugtool/library/

v z/OS V2R1.0 Language Environment Runtime Application Migration Guide,
GA32-0912

v z/OS V2R1.0 Language Environment Writing Interlanguage Communication
Applications, SA38-0684

v z/OS Language Environment Runtime Messages, SA38-0686

Assembler
v HLASM Language Reference, SC26-4940

v HLASM Programmer's Guide, SC26-4941

COBOL
v COBOL documentation, which is available at: http://www.ibm.com/software/

awdtools/cobol/zos/library/.

PL/I
v PL/I documentation, which is available at http://www.ibm.com/software/

awdtools/pli/plizos/library/.

VS FORTRAN
v VS FORTRAN documentation, which is available at http://www.ibm.com/

software/awdtools/fortran/vsfortran/library.html.

CICS Transaction Server for z/OS
v CICS Transaction Server for z/OS documentation, which is available at:

http://www.ibm.com/software/htp/cics/

DB2
v DB2 for z/OS documentation, which is available at http://www.ibm.com/

software/data/db2/zos/library.html.

IMS/ESA®

v IMS documentation, which is available at http://www.ibm.com/software/data/
ims/library.html.

MVS
v z/OS MVS Program Management: User's Guide and Reference, SA23-1393

v z/OS MVS Program Management: Advanced Facilities, SA23-1392

QMF
v QMF documentation, which is available at http://www.ibm.com/software/

data/qmf/library.html.

DFSMS
v z/OS DFSMS Introduction, SC23-6851

v z/OS DFSMS Managing Catalogs, SC23-6853

v z/OS DFSMS Using Data Sets, SC23-6855

v z/OS DFSMS Macro Instructions for Data Sets, SC23-6852

v z/OS DFSMS Access Method Services Commands, SC23-6846

154 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/pli/plizos/library/
http://www.ibm.com/software/awdtools/pli/plizos/library/
http://www.ibm.com/software/awdtools/fortran/vsfortran/library.html
http://www.ibm.com/software/awdtools/fortran/vsfortran/library.html
http://www.ibm.com/software/htp/cics/
http://www.ibm.com/software/data/db2/zos/library.html
http://www.ibm.com/software/data/db2/zos/library.html
http://www.ibm.com/software/data/ims/library.html
http://www.ibm.com/software/data/ims/library.html
http://www.ibm.com/software/data/qmf/library.html
http://www.ibm.com/software/data/qmf/library.html

Index

Special characters
__cplusplus standard macro

determining ISO standard level
supported by compiler 115

__IBMCPP_EXTENDED_FRIEND macro
as of z/OS V1R11 124

__librel() function 29
using to determine library release 29

_64 suffix for compiler invocations
as of z/OS V1R6 C/C++ 96

_CEE_RUNOPTS environment variable
as of z/OS V1R10 105

_DEBUG_FORMAT environment
variable 74, 97

as of z/OS V1R6 C/C++ 59, 97, 103
with LP64 67

_EDC_PTHREAD_YIELD environment
variable 107

_EDC_PUTENV_COPY environment
variable 82

POSIX compliance 73
retaining OS/390 behavior 43, 73
retaining pre- z/OS V1R5 C/C++

behavior 108
_ICONV_MODE environment variable

as of z/OS V1R9 XL C/C++
user-defined conversion tables 98

_Ieee754.h header file
as of z/OS V1R9 XL C++

potential need to include 81
_LONG_LONG macro

as of z/OS V1R6 C/C++ 65
_OPEN_SYS_SOCK_IPV6 macro

as of z/OS V1R7 XL C++ 82, 100
_PVERSION environment variable

as of z/OS V1R8 XL C/C++ 102
_TZ environment variable 45
_x suffix for compiler invocations

as of z/OS V1R6 C/C++ 96
_XOPEN_SOURCE_EXTENDED macro

as of z/OS V1R9 XL C++ 100
@@CTEST objects

relinking C/370 modules 32
@euro locale

as of z/OS V1R6 109
@preeuro locale

as of z/OS V1R6 109
–qcpluscmt command option

as of z/OS V1R7 XL C/C++
when to override 97

#pragma comment
and Unicode character translation

as of z/OS V1R10 XL C/C++ 61
#pragma enum

as of z/OS V1R2 C/C++ 62
#pragma leaves

as of OS/390 V2R9 68
#pragma map

as of z/OS V1R3 C/C++ 32

#pragma pack(2)
as of z/OS V1R2 XL C++

unexpected C++ output 84
as of z/OS V1R6 C++

alignment incompatibilities when
binding C and C++
modules 102

#pragma reachable
as of OS/390 V2R9 68

#pragma runopts
pre-OS/390 source code 17

#pragma unroll()
as of z/OS V1R7 XL C/C++ 84

#pragma variable
as of OS/390 V2R10 C/C++

reentrancy 67
as of OS/390 V2R9

reentrancy 66
as of z/OS V1R7 XL C/C++

binding OS/390 modules 71

Numerics
32-bit processing

as of z/OS V1R6 C/C++
default object model 102

64-bit processing
as of z/OS V1R6 C/C++

default object model 102
as of z/OS V1R8 XL C/C++

GONUMBER compiler option 93
64-bit virtual memory

as of z/OS V1R8 XL C/C++
IPA(LINK) 63
IPA(LINK) and ulimit

command 99
setting MEMLIMIT value 63

A
ABEND, compiler

as of OS/390 V2R9
default option (CICS) 134

as of z/OS V1R7 XL C/C++
Language Environment codes,

under CICS 134
as of z/OS V1R8 XL C/C++

insufficient storage 63
MEMLIMIT system parameter and

IMEMLIM variable 63, 99
abnormal terminations

as of OS/390 V2R9
Language Environment

enclaves 42
as of z/OS V1R8 XL C/C++

insufficient storage 63
changes from C/370 V2 46
running pre-OS/390 programs 42

access-checking
as of z/OS V1R2

classes (C++ only) 126
accessibility 145

contact IBM 145
features 145

accuracy improvements
as of z/OS V1R9

IEEE754 math functions 109
addressing incompatibilities

pre-OS/390 18
AFP registers

as of z/OS V1R9
CICS processing 136

alignment incompatibilities
as of z/OS V1R6 C/C++

between object models 102
as of z/OS V1R6 C++

binding C and C++ aggregates,
both with #pragma pack(2) 102

ambiguous overloads
as of z/OS V1R2 C++

avoiding 127
AMODE 64 applications

as of z/OS V1R10 105
ANSI-aliasing rule

as of z/OS V1R2 C/C++
pointer casting 62

ANSI/ISO standard compliance
freopen() library function 49

APAR PN74931
ILC and pre-OS/390 modules 33
pre-OS/390 modules

compatibility, achieving 33
Application Support Class Library from

C/C++ for MVS/ESA
earlier z/OS C/C++ source code 79
OS/390 source code 57
pre-OS/390 source code 17

ARCHITECTURE compiler option
as of z/OS V1R2 C/C++ 60
as of z/OS V1R6 C/C++

and overflow processing 61
as of z/OS V2R2 XL C/C++

default 61
ARGPARSE compiler option

as of z/OS V1R13 XL C/C++ 61
array new

as of z/OS V1R2 C/C++
avoiding syntax errors 129

pre-OS/390 source code
with user-defined global new

operator 18
arrays

as of V1R9 XL C/C++
index definitions 89

ASA files
closing 49
closing and reopening 53
under CICS 134
writing to 49

© Copyright IBM Corp. 2015 155

assembler interlanguage calls 33
pre-OS/390 modules 33

assembly listings
as of z/OS V1R9 XL C/C++

width of mnemonic 90
assembly source

System Programming C 20
assistive technologies 145
atexit

changes from C/370 V2 46

B
batch processing

as of z/OS V1R2 C/C++
alternative 28
SYSLIB concatenation 28

as of z/OS V1R5
abnormal termination exit

routine 40
CEEBDATX 40
CEECDATX 40

as of z/OS V1R6 109
as of z/OS V1R9 XL C/C++

and name mangling 99
pre-OS/390 modules

abnormal termination exit
routines 31

CEEBDATX 31
CEECDATX 31
messages 41
MSGFILE runtime option 41

bibliography 153
binary compatibility

IPA object modules 64
binder errors

as of z/OS V1R8 XL C/C++
namespace pollution 31, 101

binder, invoking
as of z/OS V1R8 XL C/C++ 71

BookManager documents xv
BPARM proc variable

and binder features 102
as of z/OS V1R8 XL C/C++ 102

BSD
as of z/OS V1R9 XL C++

<net/if.h> header file 100
socket definitions 100

C
C runtime library functions

as of OS/390 V2R9
pragma requirements 68

C++ class names
as of z/OS V1R3 C/C++ 32

C++ exception handling
as of z/OS V1R2 C++ 122

C++ Standard compliance
1998 support 68
as of z/OS V1R7 XL C/C++ 80

c++ utility
as of z/OS V1R6 C/C++

-g flag translation 27

C++11
as of z/OS V1R11

WARN0X compiler option 126
C++11 compiler option

as of z/OS V2R1 122
c89 utility 96

-g flag option 103
as of z/OS V1R6 C/C++ 97, 103

-g flag option 74
-g flag translation 27
binding OS/390 modules 74
debug format 59

as of z/OS V1R8 XL C/C++ 71, 102
debug format

as of z/OS V1R6 C/C++ 97
feature specification

as of z/OS V1R8 XL C/C++ 102
C99 support

as of z/OS V1R7 XL C++
standard macros 83
TARGET compiler option 83

as of z/OS V1R9
IEEE754 math functions 109
runtime libraries 109

hexadecimal floating point
notation 111

numeric conversion functions 112
catalogued procedures

and binder features 102
as of z/OS V1R8 XL C/C++ 102

IMEMLIM variable 63
IPA Link 63

CBCI procedure
as of x/OS V1R5 C++

compiling OS/390 applications 68
pre-z/OS V1R5 programs 100

CBCXI procedure
as of x/OS V1R5 C++

compiling OS/390 applications 68
pre-z/OS V1R5 programs 100

CC command
syntax, supporting old, new, or

both 68
CC EXEC

as of V1R2
invocation syntax changes 31

CC EXEC statement
customization of 68

CCN5193 exception
as of z/OS V1R2

avoiding 127
CCN5413 exception

as of z/OS V1R9
avoiding 126

CEEBDATX procedure
as of z/OS V1R5 40
pre-OS/390 modules 31

CEEBINT High-Level Language exit
routine

with setenv() function call 73, 106
CEEBINT High-Level Language exit

routines
with setenv() function call 39

CEEBLIIA library module 44
environment initialization 45

CEEBXITA library module
rules of precedence 31

CEECDATX procedure 133
pre-OS/390 modules 31

CEECOPT procedure
under CICS

as of OS/390 V2R9 134
CEEDOPT procedure

as of OS/390 V2R9
abnormal terminations of

enclaves 42
CEESTART library module 44

initialization compatibility 44
CHECKOUT compiler option

as of z/OS V1R13 XL C/C++ 91
as of z/OS V1R6 C/C++

C support 62
CHECKOUT(CAST) compiler option

as of z/OS V1R2 C/C++ 62
CICS

abend codes and messages 134
API 135
heap residence 133
reason codes 134
standard stream support 134
stderr 135
transient data queue names 135
using HEAP option 133

CICS processing
as of z/OS V1R9

AFP registers 136
FLOAT(AFP) compiler option 136
iconv() changes and

CEECCSD.COPY and
CEECCSDX.COPY files 136

Load Module Analyzer
(LMA) 136

CICS statement translation options
as of z/OS V1R7 133

class definitions
as of z/OS V1R2

avoiding exceptions 127
CCN5193 exception 127
type definitions 127

as of z/OS V1R9
CCN5413 exception 126
class access checking 126

class libraries
changes between z/OS V1R5 C/C++

and z/OS V2R2 XL C/C++
no longer supported 79

class library incompatibilities
earlier z/OS C/C++ source code 79
IO Stream Class

earlier z/OS C/C++ source
code 79

load module 75
OS/390 source code 57
pre-OS/390 source code 17
source code 75

OS/390 source code 57
pre-OS/390 source code 17

CLBPRFX variable
as of x/OS V1R5 C++

compiling OS/390 applications 68
pre-z/OS V1R5 programs 100

CLISTs
changes affecting pre-OS/390

programs 41

156 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

CMDOPTS compiler option
as of z/OS V1R7 XL C/C++ 91

COBOL interlanguage calls
pre-OS/390 modules 33, 34

code points
no longer supported

pre-OS/390 source code 21
Collection Class Library from C/C++ for

MVS/ESA
earlier z/OS C/C++ source code 79
OS/390 source code 57
pre-OS/390 source code 17

command-line parameters
Language Environment error

handling 40
passing to a program 40

comments, using
as of z/OS V1R7 XL C/C++

when to override –qcpluscmt 97
Communications Server information

handling
as of z/OS V1R9 XL C/C++ 81

COMPAT binder option
and c89 utility 102
as of z/OS V1R8 XL C/C++ 102

COMPAT compiler option
as of z/OS V1R6 C/C++ 97

compat object model
as of z/OS V1R6 C/C++ 102

compatibility issues
bind-time

from pre-OS/390 to z/OS
V1R9 29

OS/390 71
C/370 Common Library

as of z/OS V1R9 44
compile-time

earlier z/OS C/C++ programs 87
I/O operations

from pre-OS/390 49
initialization sequence

interception 44
input and output

from pre-OS/390 49
IPA release-to-release binary

compatibility 64
runtime

OS/390 applications 73
pre-OS/390 applications 43

source code
earlier z/OS C/C++ programs 79
OS/390 programs 57
pre-OS/390 compiler to z/OS

V1R9 XL C/C++ 17
compatibility, achieving

pre-OS/390 modules
APAR PN74931 33
upward and downward 33
with earlier and later releases 33

with earlier and later releases
compatibility, achieving 33

compile-time issues
from pre-OS/390 23

compiler invocations
as of z/OS V1R6 C/C++ 96
c89 59, 97

compiler messages, listings, and return
codes

ongoing changes and
dependencies 23, 59, 87

compiler option
LP64 96
TARGET

as of z/OS V1R13 XL C/C++ 95
XPLINK 96

compiler options
ARCHITECTURE

as of z/OS V1R2 C/C++ 60
as of z/OS V2R2 XL C/C++ 61

CHECKOUT
C support as of z/OS V1R6

C/C++ 62
CHECKOUT(CAST)

as of z/OS V1R2 C/C++ 62
COMPAT

as of z/OS V1R6 C/C++ 97
DBRMLIB

as of z/OS V1R8 XL C 141
z/OS V1R5 XL C — z/OS V1R8

XL C 141
DECK 23

alternative as of z/OS V1R2
C/C++ 60

DIGRAPH
default as of z/OS V1R2

C/C++ 62
ENUM

as of z/OS V1R2 C/C++ 62
ENUMSIZE

as of z/OS V1R2 C/C++ 24, 62
as of z/OS V1R7 XL C/C++ 24

ENUMSIZE(SMALL)
as of z/OS V1R7 XL C++ 92

FLAG 93
GENPCH

as of z/OS V1R2 C/C++ 60
GONUMBER

with LP64 93
HALT 24
HALTONMSG

as of z/OS V1R2 C/C++ 62
HWOPTS

alternative as of z/OS V1R2
C/C++ 60

as of z/OS V1R2 C/C++ 24
ILP32

as of z/OS V1R9 XL C/C++ 99
batch processing and name

mangling under ILP32 99
INFO

C support as of z/OS V1R6 25,
62

C support as of z/OS V1R6
C/C++ 62

INLINE
as of z/OS V1R2 C/C++ 25, 62

IPA 64
as of z/OS V1R8 XL C 27, 68, 99
as of z/OS V2R1 XL C/C++ 93

LANGLVL
as of z/OS V1R7 XL C/C++ 93,

94

compiler options (continued)
LANGLVL(ANSI) compiler option

as of z/OS V1R7 XL C 23, 25, 60,
64, 90, 93

LANGLVL(COMPAT) 24
as of z/OS V1R2 C/C++ 60

LANGLVL(EXTENDED) compiler
option

as of z/OS V1R7 XL C 25, 64, 94
LANGLVL(EXTERNTEMPLATE)

compiler option
as of z/OS V1R11 125

LANGLVL(SAA) compiler option
as of z/OS V1R7 XL C 23, 25, 60,

64, 90, 93
LANGLVL(SAA2) compiler option

as of z/OS V1R7 XL C 23, 25, 60,
64, 90, 93

LOCALE
as of z/OS V1R9 65
as of z/OS V1R9 XL C/C++ 94

LSEARCH 26, 60
as of z/OS V1R2 C/C++ 60

NORENT
as of OS/390 V2R9 66
as of z/OS V1R7 XL C/C++ 71

OE
as of z/OS V1R2 C/C++ 60

OMVS 24
alternative as of z/OS V1R2

C/C++ 60
OPTIMIZE 26

as of z/OS V1R5 C/C++ 66
ROCONST

default as of z/OS V1R2
C/C++ 67

ROSTRING
as of z/OS V1R2 C/C++ 66

SEARCH 26
as of z/OS V1R2 C/C++ 60

SOM
as of OS/390 V2R10 C/C++ 60
no longer supported 60

SQL
as of z/OS V1R8 XL C 141

SRCMSG 24
as of z/OS V1R2 C/C++ 60

STATICINLINE
default as of z/OS V1R2

C/C++ 67
SYSLIB 24

alternative as of z/OS V1R2
C/C++ 60

SYSPATH 24
alternative as of z/OS V1R2

C/C++ 60
TARGET

as of z/OS V1R6 C/C++ 97
as of z/OS V2R2 XL C/C++ 67

TEST
as of z/OS V1R6 C/C++ 27, 67

TUNE
as of z/OS V2R2 XL C/C++ 67

USEPCH
as of z/OS V1R2 C/C++ 60

USERLIB 24

Index 157

compiler options (continued)
alternative as of z/OS V1R2

C/C++ 60
USERPATH 24

alternative as of z/OS V1R2
C/C++ 60

compiler options for compatibility with
previous compilers 100

compiler options, no longer supported
as of z/OS V1R2 C/C++ 60

compiler options, specifying in JCL 27
compiler otions, no longer supported

pre-OS/390 23
compiler substitution variables

as of z/OS V1R10 88
compiler-time issues

from C/370 V2 23
concatenation of libraries

environment initialization 45
conflicts between options and pragmas

as of z/OS V1R7 XL C/C++ 91
contact

z/OS 145
ctest() function

relinking C/370 modules 32
ctime() 45
customization

as of z/OS V1R6
Language Environment

services 109
cv-qualification

as of z/OS V1R2 C++ 122

D
data conversions

as of z/OS V1R6 C/C++
and ARCHITECTURE level 61

data set names 67
data type incompatibilities

pre-OS/390 source code 19
data types

as of z/OS V1R6 XL C
long long 65

Database Access Class Library
as of OS/390 V1R4

removal of utility 75
DB2

Database Access Class Library
utility 139

requesting DB2 services
z/OS V1R5 XL C — z/OS V1R8

XL C 139
DB2 services, requesting

using SQL compiler option 139
DBRMLIB compiler option

z/OS V1R5 XL C — z/OS V1R8 XL
C 141

ddnames
SYSERR 41
SYSPRINT 41
SYSTERM 41

debug format 103
as of z/OS V1R6 C/C++

binding OS/390 modules 74
c89 utility 59
determining 67

debug format (continued)
c89 utility 97

Debug Tool
relinking C/370 modules 32

debugging issues
relinking C/370 modules 32

decimal floating-point (DFP)
as of z/OS V1R9 XL C++

size modifiers 82, 106
decimal overflow exceptions

pre-OS/390 CICS modules 46
DECK compiler option

alternative as of z/OS V1R2
C/C++ 23

as of z/OS V1R2 C/C++
alternative 60

default daylight saving time
as of z/OS V1R9 107, 108

destruction of statically initialized objects
before and after ISO/IEC 14882:2003(E)
compliance 120

DIGRAPH compiler option
as of z/OS V1R2 C/C++

default 62
DSAUSER compiler option

as of z/OS V1R13 XL C/C++ 92
DSECT header files

packed structures and unions 19
dump services

as of C/C++ for MVS/ESA V3
dump generation or

suppression 41
dumps

generating automatically
as of z/OS V1R5 40

Language Environment format
as of z/OS V1R5 40

DWARF debug format
-g flag

as of z/OS V1R6 C/C++ 97
dynamic binding

declaring and calling virtual functions
as of z/OS V1R6 C/C++ 84

dynamic code 44

E
EDCXSTRX

and dynamic C library functions in
SPC applications 20

EDCXV 20
EEC default currency

as of z/OS V1R6 109
enclaves

as of OS/390 V2R9
abnormal terminations 42

enumeration types
as of z/OS V1R7 XL C/C++

controlling size of 62
controlling size of

as of z/OS V1R7 XL C/C++ 24
as of z/OS V1R7 XL C++ 92

enumerations
as of z/OS V1R7 XL C++ 92
differences between UNIX System

Laboratories and Standard C++ I/O
Stream libraries 75

ENUMSIZE compiler option
as of z/OS V1R2 C/C++ 24, 62
as of z/OS V1R7 XL C/C++ 24

ENUMSIZE(SMALL) compiler option
as of z/OS V1R7 XL C++ 92

ENVAR("_EDC_COMPAT=32767")
runtime option 39, 73, 106

environment initialization 45
environment variables

_EDC_COMPAT 51
as of z/OS V1R5 C/C++

POSIX compliance 82
putenv() 82
storage of 82

as of z/OS V1R6 C/C++
_DEBUG_FORMAT 27, 59
-g flag translation 27, 59
c89/c++ 27
DWARF 59

internationalization issues 45
POSIX compliance 45

error messages
as of z/OS V1R8 XL C/C++

binder 31, 101
as of z/OS V1R9 XL C++

name lookup exceptions 90
templates 90

Language Environment services
redirecing 41

namespace pollution
as of z/OS V1R8 XL C/C++ 31,

101
templates 90

errors
as of z/OS V1R7 XL C++

non-standard long long
macros 83

due to compiler changes 126
errors, migration

macro redefinitions
as of z/OS V1R7 XL C 23, 25, 60,

64, 90, 93
Unable to open DBRM file

as of z/OS V1R8 XL C 141
escape sequence encoding

as of z/OS V1R11 88
Euro

as of z/OS V1R6 109
exception handling

as of z/OS V1R2
access checking (C++ only) 126
class type definitions 126

as of z/OS V1R2 C++ 122
ambiguous overloads 127

as of z/OS V1R9
CCN5413 exception 126

changes from C/370 V2
return codes 46
SIGINT 46
SIGTERM 46
SIGUSR1 46
SIGUSR2 46

differences between C/370 and
Language Environment

library return codes and
messages 39

user-defined conversions 128

158 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

exceptions
as of z/OS V1R2

avoiding exceptions 127
CCN5193 exception 127
type definitions 127

EXEC statements
CC 31
CC command 68
changes affecting pre-OS/390

programs 41
customization of 68

existing applications, migrating to z/OS
XL C

From C/370 V2 15
external references

as of z/OS V1R3 C/C++ 32
external variable names

as of z/OS V1R3 C/C++ 32

F
feature test macros

and system header files
as of z/OS V1R9 XL C++ 81

feature testing
as of z/OS V1R11 XL C++ 100
as of z/OS V1R7 XL C++ 82, 100
as of z/OS V1R9 XL C++ 100

fetched main programs
pre-OS/390 source code 19

fflush() function 51
fgetpos() function 51
fixes

pre-OS/390 modules
APAR PN74931 33

z/OS V1R5 XL C — z/OS V1R8 XL C
DBRMLIB option 139

FLAG compiler option
as of z/OS V1R13 XL C/C++ 93

flags
differences between UNIX System

Laboratories and Standard C++ I/O
Stream libraries 75

fldata() function
changes in return values 53

FLOAT(AFP) compiler option
CICS processing

as of z/OS V1R9 136
floating-point support

runtime libraries 111
for loops

as of z/OS V1R7 XL C/C++
unrolling 84

scoping
as of z/OS V1R2 C++ 120

format control flags
differences between UNIX System

Laboratories and Standard C++ I/O
Stream libraries 75

Fortran interlanguage calls
as of Language Environment

V1R5 33
freopen() library function

ANSI/ISO standard 49
friend declaration

as of z/OS V1R11
extendedfriend 124

friend declarations in class member lists
and Standard C++ compliance

as of z/OS V1R2 C++ 121
friend declarations, visibility of

as of z/OS V1R2 C++
effect on friend declarations 121

fseek() function 51
function return type

pre-OS/390 source code 18

G
GENASM compiler option

as of z/OS V1R13 XL C/C++ 93
GENPCH compiler option

as of z/OS V1R2 C/C++ 60
getnameinfo() function

as of z/OS V1R9 XL C/C++
scope information 81

global new operator, user-defined
pre-OS/390 source code

example 18
GONUMBER compiler option

as of z/OS V1R8 XL C/C++
with LP64 93

H
HALT compiler option 24
HALTONMSG compiler option

as of z/OS V1R2 C/C++ 62
header files

and feature test macros
as of z/OS V1R9 XL C++ 81

as of z/OS V1R7 XL C++
_OPEN_SYS_SOCK_IPV6

macro 82
exposing new definitions 82
Language Enviroment 82, 100

as of z/OS V1R9
time.h 107

as of z/OS V1R9 XL C++ 81
_Ieee754.h 81
IEEE 754 interface declarations 81
Language Enviroment 100

DSECT
migration from pre-OS/390 19

HEAP runtime option
default size 42
parameters 42
with CICS 133

HEAPPOOLS runtime option
as of z/OS V1R10 105

hexadecimal floating point notation
C99 support 111

HFS files, support of 68
HWOPTS compiler option

as of z/OS V1R2 C/C++ 24
alternative 60

I
IBM data set names 67
IBM object model

as of z/OS V1R6 C/C++ 102

IBM Open Class Library
-OS/390 source code 57
earlier z/OS C/C++ source code 79
pre-OS/390 source code 17
removal of runtime support 75

IBMBLIIA library module 44
environment initialization 45

IBMBXITA library module
rules of precedence 31

iconv() changes and CICS processing
as of z/OS V1R9 136

IEEE 754 interface declarations
as of z/OS V1R9 XL C++

namespace pollution 81
IEEE754 math functions

as of z/OS V1R9
version specification 109

IEFUSI exit routine
as of z/OS V1R8 XL C/C++

MEMLIMIT value 99
MEMLIMITvalue 63

IEW2456E error condition
binding earlier z/OS C/C++

programs
handling 101

binding pre-OS/390 programs
handling 31

ILP32 compiler option
as of z/OS V1R9 XL C/C++

batch processing and name
mangling 99

IMEMLIM variable
as of z/OS V1R8 XL C/C++

cataloged procedures 99
MEMLIMIT system parameter 99
to override the MEMLIMIT

default 63
implicit integer types

as of z/OS V1R2 C++ 120
include files, finding 24
incompatibilities

between Open Class and Standard
/C++ libraries 75

INFO compiler option
as of z/OS V1R6 C/C++

C support 62
C support as of z/OS V1R6 25
default as of z/OS V1R2 C/C++ 25

initialization compatibility issues 44
C/370 Common Library

as of z/OS V1R9 44
initialization schemes

CEESTART and IBMBLIIA
modules 44

INLINE compiler option
as of z/OS V1R2 C/C++ 25

defaults 62
inlining threshold

as of z/OS V1R2 C/C++ 62
input and output

as of z/OS V1R9 XL C++
impact of DFP size modifiers 82
impact of DFP size modifiers on

fprintf/fscanf results 106
source code modifications to

fprintf and fscanf function
arguments 82

Index 159

input and output (continued)
ASA files

closing and reopening 53
closing files 49
writing to files 49

closing and reopening files
ASA files, opening and closing 53

closing files
ASA files 49

compatibility issues 49
file I/O changes 49
fldata() function 53
ftell() encoding 51
opening files 49
repositioning within files 51
terminal I/O 54
VSAM I/O 54
writing to files

ASA files 49
other considerations 49

interlanguage calls
assembler 33
PL/I 33

interlanguage calls (ILC)
as of Language Environment

V1R5 33
as of z/OS V1R6 C++

between C and C++ program
modules using #pragma
pack(2) 102

pre-OS/390 binder error 46
pre-OS/390 modules 33
pre-OS/390 source code 20
program mask manipulations

pre-OS/390 source code 20
relinking pre-OS/390 modules 32

internal timing algorithm
as of z/OS V1R8 107

internationalization
migration issues 108

internationalization incompatibilities
no longer supported

pre-OS/390 source code 21
pre-OS/390 source code 21

internationalization issues
time zones 45

invocation of XL C/C++ compiler
as of z/OS V1R6 C/C++ 96

IPA compiler option
as of z/OS V1R9 XL C/C++

IPA link step 68
macro redefinition 68
region size 68
very large applications 68

as of z/OS V2R1 XL C/C++ 93
binary compatibility issues 64
macro redefinition

as of z/OS V1R8 XL C 27, 99
IPA Link step

as of z/OS V1R9 XL C/C++
very large applications 68

very large applications
as of z/OS V1R8 XL C 27, 99

IPA(LINK) compiler option
as of z/OS V1R8 XL C/C++ 63

64-bit memory 99
link step defaults 63

ISAINC runtime option
Language Environment

equivalent 41
ISASIZE runtime option

Language Environment
equivalent 41

ISASIZE/ISAINC with #pragma runopts
pre-OS/390 source code 17

ISO standard C++ compliance
determining level supported by

compiler 115
ISO Standard C++ compliance 100

recommended approaches for
migration objectives 117

ISO/IEC 14882:2003(E) compliance
effect on cv-qualification 122
statically initialized objects,

destruction of 120

J
JCL procedures

arguments that contain a slash 41
as of C/C++ for MVS/ESA V3

dump generation or
suppression 41

as of x/OS V1R5 C++
CBCI 68
CBXI 68
CLBPRFX variable 68

as of z/OS V1R2 C/C++ 28
as of z/OS V1R5

CEEBDATX 40
as of z/OS V1R5 C/C++ 28
as of z/OS V1R7 XL C/C++

bind step 71
as of z/OS V1R8 XL C/C++

64-bit virtual memory 63
setting MEMLIMIT value 63

as of z/OS V1R9 XL C/C++
default region size 98
name mangling 99
user-defined conversion tables 98

CBCC 27
CBCCL 27
CBCCLG 27
CBCI 28
CBCXI 28
CC EXEC statement 68
CEEBDATX 31
CEECDATX 31, 133
CEECOPT

as of OS/390 V2R9 134
CEEDOPT

abnormal terminations of
enclaves 42

changes affecting pre-OS/390
programs 41

CLBPRFX variable 28
customizing for migrations from

OS/390 68
CXX parameter 27
differences between C/370 and

AD/Cycle C/370 V1R2
library return codes and

messages 39
GO step 41

JCL procedures (continued)
interlanguage calls and compiler

options 34
obsolete C/370 runtime options 41
pre-z/OS V1R5 C/C++

modifications 100
SYSLIB DD cards to remove

as of z/OS V1R2 C/C++ 28
to compile very large applications

as of z/OS V1R8 XL C 27, 68, 99
user-defined for C++ 27

K
keyboard

navigation 145
PF keys 145
shortcut keys 145

L
LANGLVL compiler option

and macro redefinitions
as of z/OS V1R7 XL C/C++ 93,

94
LANGLVL(ANSI) compiler option

and Standard C++ compliance
objectives 117

as of z/OS V1R7 XL C
macro redefinition 60, 64

macro redefinition
as of z/OS V1R7 XL C 23, 25, 90,

93
LANGLVL(AUTOTYPEDEDUCTION)

compiler option
as of z/OS V1R12 123

LANGLVL(C1XNORETURN) compiler
option

as of z/OS V2R1 123
LANGLVL(C99LONGLONG) compiler

option
as of z/OS V1R12 123

LANGLVL(C99PREPROCESSOR)
compiler option

as of z/OS V1R12 123
LANGLVL(COMPAT) compiler option

alternative as of z/OS V1R2
C/C++ 24

as of z/OS V1R2 C/C++ 60
LANGLVL(COMPAT92) compiler option

and Standard C++ compliance
objectives 117

LANGLVL(CONSTEXPR) compiler option
as of z/OS V2R1 124

LANGLVL(DECLTYPE) compiler option
as of z/OS V1R12 124

LANGLVL(DEFAULTANDDELETE)
compiler option

as of z/OS V2R1 124
LANGLVL(DELEGATINGCTORS)

compiler option
as of z/OS V1R12 124

LANGLVL(EXPLICITCONVERSIONOPERATORS)
compiler option

as of z/OS V2R1 124

160 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

LANGLVL(EXTC1X) compiler option
as of z/OS V2R1 93

LANGLVL(EXTENDED) compiler option
and Standard C++ compliance

objectives 117
as of z/OS V1R7 XL C

macro redefinition 64
macro redefinition

as of z/OS V1R7 XL C 25, 94
LANGLVL(EXTENDED0X) compiler

option
as of z/OS V1R11 94

LANGLVL(EXTENDEDFRIEND)
compiler option 124

LANGLVL(EXTENDEDINTEGERSAFE)
compiler option

as of z/OS V1R12 125
LANGLVL(EXTERNTEMPLATE)

compiler option
as of z/OS V1R11

macro redefinition 125
LANGLVL(IMPLICITINT) compiler

option 120
LANGLVL(INLINENAMESPACE)

compiler option
as of z/OS V1R12 125

LANGLVL(LONGLONG) compiler option
as of z/OS V1R7 XL C++ 83

LANGLVL(NOANSIFOR) compiler
option

scoping for-loop initializer
declarations

as of z/OS V1R2 C++ 120
LANGLVL(OLDFRIEND) compiler option

as of z/OS V1R2 C++
effect on friend declarations 121

LANGLVL(OLDMATH) compiler option
as of z/OS V1R2 C++ 127

LANGLVL(REFERENCECOLLAPSING)
compiler option

as of z/OS V2R1 125
LANGLVL(RIGHTANGLEBRACKET)

compiler option
as of z/OS V2R1 125

LANGLVL(RVALUEREFERENCES)
compiler option

as of z/OS V2R1 126
LANGLVL(SAA) compiler option

as of z/OS V1R7 XL C
macro redefinition 60, 64

macro redefinition
as of z/OS V1R7 XL C 23, 25, 90,

93
LANGLVL(SAA2) compiler option

as of z/OS V1R7 XL C
macro redefinition 60, 64

macro redefinition
as of z/OS V1R7 XL C 23, 25, 90,

93
LANGLVL(SCOPEDENUM) compiler

option
as of z/OS V2R1 126

LANGLVL(STATIC_ASSERT) compiler
option

as of z/OS V1R12 126

LANGLVL(STRICT98) compiler option
and Standard C++ compliance

objectives 117
LANGLVL(VARIADICTEMPLATES)

compiler option
as of z/OS V1R12 126

Language Enviroment
as of z/OS V1R7 XL C++ 82
header files

as of z/OS V1R7 XL C++ 82
netinet/in.h 82

Language Environment runtime libraries
as of z/OS V1R7 XL C++

header files 100
as of z/OS V1R9 XL C++

header files 100
pre-OS/390 modules

packaging 34
Language Environment services

as of OS/390 V2R9
abnormal enclave terminations 42
abnormal terminations 42
enclaves 42

as of z/OS V1R2 C/C++
arguments that contain a slash 41
data set names 41
default heap allocatons 42
error messages 39, 40
error parameter passing 40
HEAP parameter specification 42
passing runtime options 41
return codes 39
STACK defaults 43
TRAP restrictions 42

as of z/OS V1R5 C/C++
abnormal terminations 40
batch jobs 40
customizing procedures 100
data set names 40
modifying JCL 100
specifying message language 40

as of z/OS V1R6
customization 109
LOCALDEF utilities 109

as of z/OS V1R7 XL C/C++
abend codes and messages with

CICS 134
dumps 134

as of z/OS V1R9
default daylight saving time 107
default daylight saving time,

retaining previous 108
C/370 CICS modules

initialization compatibility
issues 44

realloc() 47
unexpected SIGFPE exceptions 46

CICS modules
writing to pre-OS/390 files 49

customization issues
OS/390 migrations 74

equivalents for C/370 V2 runtime
options 41

iconv() changes and CICS processing
as of z/OS V1R9 136

initialization 44
interlanguage calls (ILC) 33

Language Environment services
(continued)

OS/390 migration issues
customization 74

output handling under CICS 135
pre-OS/390 CICS modules

coexistence considerations 46
decimal overflow exceptions 46
exception handling 46
initialization schemes 44
initializing 45
input and output compatibility

issues 49
pre-OS/390 CICS programs

abnormal terminations 133
dumps 133
heap residence 133

pre-OS/390 modules
APAR PN74931 33
converting modules to use

Language Environment
services 36

directing error messages 41
pre-OS/390 programs

retaining runtime beharior 39
runtime messages 39
STACK parameters 43

record handling under CICS 134
transient data queue names under

CICS 135
language for compiler messages,

specifying 59
language libraries

pre-OS/390 modules 34
LANGUAGE runtime option

Language Environment
equivalent 41

LANGUAGE with #pragma runopts
pre-OS/390 source code 17

LC_MONETARY information
as of z/OS V1R6 109

library file searches
based on name and type

as of z/OS V1R2 C/C++ 28
library functions

ctest() 32
ctime() 45
fflush() 51
fgetpos() 51
fseek() 51
librel 29
localtime() 45
mktime() 45
pthread_yield()

as of z/OS V1R8 XL C/C++ 80
pthread_yield() function

as of z/OS V1R9 XL C++ 80
putenv()

as of z/OS V1R5 C/C++ 82, 108
realloc()

migration from pre-OS/390 47
pre-OS/390 source code

modification 47
sched_yield()

as of z/OS V1R8 XL C/C++ 80
ungetc() 51

Index 161

library release
determining 29

link step
as of z/OS V1R8 XL C/C++

IPA(LINK) defaults 63
IPA binary compatibility 64

linkage editor control statements
pre-OS/390 modules

calls to COBOL routines 34
linkage issues

as of V1R10 88
as of V1R9 with PTF UK31348 88

listings
as of z/OS V1R6 C/C++

binding OS/390 modules 74
formats 74

binding OS/390 modules 103
format changes 23, 59, 87
formats 103

Load Module Analyzer (LMA)
CICS processing

as of z/OS V1R9 136
load modules

converting pre-OS/390 programs 36
LOCALDEF utilities

as of z/OS V1R6 109
LOCALE compiler option

and macro redefinitions
as of z/OS V1R9 XL C/C++ 94

locale name
as of z/OS V1R9

__LOCALE__ macro 65
LOCALE compiler option 65

localtime() 45
long long data type

as of z/OS V1R7 XL C++
C99 standard macros 83

long long macros
as of z/OS V1R7 XL C++

numeric conversion functions 83
LP64 compiler option

as of z/OS V1R6 C/C++ 96
as of z/OS V1R8 XL C/C++

and GONUMBER compiler
option 93

LP64 environment restriction
as of z/OS V1R6 C/C++

with _DEBUG_FORMAT
environment variable 67

LSEARCH compiler option 26
as of z/OS V1R2 C/C++ 60

M
M compiler option

as of z/OS V1R11 95
as of z/OS V2R1 65

macors
for LANGLVL(EXTENDED)

z/OS V1R7 XL C 25
macro definition check

SQL coprocessor-based compilations
as of z/OS V1R10 XL C/C++ 140

macro redefinitions
as of z/OS V1R7 XL C/C++

under LANGLVL(ANSI),
LANGLVL(SAA), or
LANGLVL(SAAL2) 93

under LANGLVL(EXTENDED) 94
macro undefinition and redefinition

SQL coprocessor-based compilations
as of z/OS V1R10 XL C/C++ 140

macros
_OPEN_SYS_SOCK_IPV6

as of z/OS V1R7 XL C++ 82
as of z/OS V1R11

__IBMCPP_EXTENDED_FRIEND 124
as of z/OS V1R6 XL C

_LONG_LONG 65
as of z/OS V1R9 XL C/C++

__LOCALE__ macro 94
for certain language levels

as of z/OS V1R7 XL C 23, 25, 60,
64, 90, 93

for LANGLVL(EXTENDED)
V1R7 XL C 94
z/OS V1R7 XL C 64

for LANGLVL(EXTERNTEMPLATE)
z/OS V1R11 125

macros, standard
as of z/OS V1R7 XL C++

C99 support of 83
TARGET compiler option 83

main programs, fetched
pre-OS/390 source code 19

mainframe
education xvi

maintenance level, determining 139
mangled names

as of z/OS V1R3 C/C++ 32
math functions

as of z/OS V1R9
IEEE754 109

MEMLIMIT default value
as of z/OS V1R8 XL C/C++

64-bit memory 99
64-bit virtual memory 63
overriding 63, 99
setting 63, 99

memory requirements
as of z/OS V1R8 XL C/C++ 27
as of z/OS V1R9 XL C/C++

IPA link step 68
IPA link step 27

as of z/OS V1R8 XL C/C++ 99
message data sets

NATLANG runtime option 40, 59
messages

CICS 134
CICS reason codes 134
contents 39
debug format

as of z/OS V1R6 C/C++ 59, 97
differences between C/370 and

AD/Cycle C/370 V1R2 39
differences between C/370 and

Language Environment 39
differences between pre-OS/390 and

Language Environment runtime
messages 39

messages (continued)
macro redefinitions

as of z/OS V1R11 125
as of z/OS V1R7 XL C 23, 25, 60,

64, 90, 93, 94
MSGFILE runtime option 41
non-DLL compilations

as of z/OS V1R6 C/C++ 97
perror() 40
prefixes 39
specifying the national language

for 40, 59
strerror() 40
Unable to open DBRM file

as of z/OS V1R8 XL C 141
migration objectives and recommended

approaches 117
mktime() 45
Model Tool support

as of OS/390 V2R10 C/C++ 69
MSGFILE runtime option

pre-OS/390 modules 41
multithreaded applications

binding OS/390 modules 71
MVS batch interface

as of z/OS V1R6 109
MVS/ESA V3

dumps 41

N
name lookups

as of z/OS V1R10 XL C++ 119
name mangling

as of z/OS V1R3 C/C++ 32
as of z/OS V1R9 XL C/C++

and batch processing 99
namespace pollution

as of z/OS V1R9 XL C++
IEEE 754 interface declarations 81
math.h 81

SQL coprocessor-based compilations
as of z/OS V1R10 139

namespace pollution error
as of z/OS V1R8 XL C/C++

handling 31, 101
namespace pollution errors

SQL coprocessor-based compilations
handling, as of z/OS V1R10 139

namespaces
as of z/OS V1R10

avoiding pollution of 139
as of z/OS V1R9 XL C++

<net/if.h> header file 100
avoiding pollution of 81

XPG 4.2 100
national language for runtime

environment, specifying 40
NATLANG runtime option 40

C/370 equivalent 41
message data sets 59

navigation
keyboard 145

new
pre-OS/390 source code

array format 18

162 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

new, array version
as of z/OS V1R2 C/C++

avoiding syntax errors 129
pre-OS/390 source code 18

non-DLL compilations
as of z/OS V1R6 C/C++ 97

NONIPSTACK runtime option
Language Environment

equivalent 41
NORENT compiler option 71

as of OS/390 V2R9
variables 66

NOSPIE runtime option
running pre-OS/390 programs 42

NOSTAE runtime option
running pre-OS/390 programs 42

Notices 149
NULL assignments

pre-OS/390 source code 19
numeric conversion functions

as of z/OS V1R7 XL C++
long long macros 83

C99 support 112

O
object models, supported

as of z/OS V1R6 C/C++ 102
OE compiler option

as of z/OS V1R2 C/C++ 60
OMVS compiler option

alternative as of z/OS V1R2
C/C++ 24

as of z/OS V1R2 C/C++
alternative 60

optimization
as of OS/390 V2R6 C/C++ 60

OPTIMIZE compiler option 26
as of z/OS V1R5 C/C++

OPT(3) 66
OS/390 behavior

retaining 73
OS/390 migration issues

Language Environment
customization 74

OS/390 migrations
JCL procedures 68

OS/390 modules
as of z/OS V1R7 XL C/C++

bind step 71
OS/390 programs

improving performance 68
OS/390 V1R4

Database Access Class Library utility
removal of support 75

OS/390 V2R10
removal of Model Tool support 69
ROSTRING compiler option 67
System Object Model (SOM)

removal of support 75
OS/390 V2R6

optimization level mapping and
listing content 60

OS/390 V2R9
#pragma leaves 68
#pragma reachable 68
#pragma variable 66

OS/390 V2R9 (continued)
enclaves

abnormal terminations 42
NORENT compiler option 66
variables 66

overflow processing
and ARCH option 57
as of z/OS V1R6 C/C++

and ARCHITECTURE level 61
and data conversions 61

OS/390 source code
examples 57

overload ambiguities
as of z/OS V1R2 C++

avoiding 127
overloads of standard math functions

as of z/OS V1R2 C++
avoiding exceptions 127

P
packed structures and unions

assignment restrictions
migration from pre-OS/390 19

DSECT header files
migration from pre-OS/390 19

PDF documents xv
PDS 49
PDSE 49
performance improvements

as of z/OS V1R9
IEEE754 math functions 109

performance, improving
as of z/OS V1R9 XL C/C++

very large applications 68
very large applications

as of z/OS V1R8 XL C 27, 99
when recompiling OS/390

programs 68
perror() 40
PL/1 interlanguage calls

pre-OS/390 modules 33
PL/I interlanguage calls 33
pointer casting

as of z/OS V1R2 C/C++
anti-aliasing rule 62

pointer incompatibilities
pre-OS/390 source code 19

portability
to or from AIX

as of z/OS V1R6 C/C++ 96
POSIX compliance

as of z/OS V1R5
changes to putenv() 108

as of z/OS V1R5 C/C++
putenv() function 82

POSIX compliance 73
retaining OS/390 behavior 73

potential linkage issues
as of V1R10 88
as of V1R9 with PTF UK31348 88

pragma
enum

as of z/OS V1R2 C/C++ 62
pack

DSECT header files 19

pragma (continued)
runopts

pre-OS/390 source code 17
variable

as of OS/390 V2R10 C/C++ 67
pragmas

as of z/OS V1R2 XL C++
pack(2) 84

as of z/OS V1R7 XL C/C++
variable 71

binding OS/390 modules 71
changes in behavior of variables 71
leaves

as of OS/390 V2R9 68
reachable

as of OS/390 V2R9 68
runopts 41

pre-OS/390 applications
runtime

compatibility issues 43
pre-OS/390 source code

NULL assignments 19
pointer incompatibilities 19

program masks
CICS applications

pre-OS/390 source code 20
pre-OS/390 source code 20
System Programming C

pre-OS/390 source code 20
pselect() interface

as of z/OS V1R11 XL C++ 100
PSW mask 20
putenv()

as of z/OS V1R5
and POSIX compliance 108

putenv() function
as of z/OS V1R5 C/C++ 82

R
realloc() function

migration from pre-OS/390 47
pre-OS/390 source code

modification 47
recommended approaches for migration

objectives 117
reentrancy

as of OS/390 V2R10 C/C++
#pragma variable 67

as of OS/390 V2R9
#pragma variable 66

as of z/OS V1R7 XL C/C++
binding OS/390 modules 71

region size
as of z/OS V1R9 XL C/C++

default 68
release changes and migration issues 3,

5
relink requirements

ctest() 32
REPORT runtime option

Language Environment
equivalent 41

REPORT with #pragma runopts
pre-OS/390 source code 17

Index 163

resolution of conflicts between options
and pragmas

as of z/OS V1R7 XL C/C++ 91
resource allocation

and memory management
pre-OS/390 source code 47

return codes
control of processing

as of z/OS V1R10 97
specifying maximum acceptable

as of z/OS V1R10 97
return codes differences

between C/370 and Language
Environment 39

ROCONST compiler option
default as of z/OS V1R2 C/C++ 67

ROSTRING compiler option
as of z/OS V1R2 C/C++ 66

RPTSTG runtime option
C/370 equivalent 41

rules of precedence
user exits 31

runtime behavior, OS/390
retaining for the greatest number of

items 73
runtime behavior, pre-OS/390

retaining for the greatest number of
items 39

runtime behavior, previous
daylight saving time 107
internal timing algorithm 107
retaining earlier IEEE754 math

functions 107
retaining for the greatest number of

items 106
runtime compatibility issues

pre-OS/390 applications 43
runtime libraries

C/370, under CICS 133
C99 standard

floating-point notation 111
floating-point special values 112

Runtime Library Extensions
earlier z/OS C/C++ source code 79
OS/390 source code 57
pre-OS/390 source code 17

runtime options
ABTERMENC 42

abnormal terminations of
enclaves 42

C/370 V2 compiler to z/OS V1R9 C
compiler 39

ending options list 41
HEAP 42

C/370 V2 compiler to z/OS V1R9
C compiler 42

ISAINC
Language Environment

equivalent 41
ISASIZE

Language Environment
equivalent 41

LANGUAGE
Language Environment

equivalent 41
MSGFILE 41
passing to program 41

runtime options (continued)
pre-OS/390 39
REPORT

Language Environment
equivalent 41

slash (/) 41
SPIE

Language Environment
equivalent 41

SPIE|NOSPIE 42
STAE

Language Environment
equivalent 41

STAE|NOSTAE 42
TRAP 42

runtime options, specifying in JCL 27

S
scanf()

as of z/OS V1R9 XL C++
impact of DFP size modifiers,

source code modifications 82
SCEERUN library module 44

environment initialization 45
SCLBH data sets 28
scope information

handling
as of z/OS V1R9 XL C/C++ 81

SEARCH compiler option 26
as of z/OS V1R2 C/C++ 60

sending comments to IBM xvii
setlocale() function

as of z/OS V1R6 109
shortcut keys 145
SIBMLINK library module 44

environment initialization 45
SIGFPE exceptions 46

CICS applications
pre-OS/390 source code 20

pre-OS/390 binder error 46
pre-OS/390 source code 20
System Programming C

pre-OS/390 source code 20
SIGINT exception

changes from C/370 V2 46
SIGTERM exception

changes from C/370 V2 46
SIGUSR1 exception

changes from C/370 V2 46
SIGUSR2 exception

changes from C/370 V2 46
sizeof operator

pre-OS/390 source code 18
SOM compiler option

as of OS/390 V2R10
removal of SOM support 75

source code
pre-OS/390 compiler to z/OS V1R9

XL C/C++ 17
source code incompatibilities

with earlier releases of the z/OS
C/C++ compiler 79

with OS/390 programs 57
source code modifications

as of z/OS V1R9 XL C++
impact of DFP size modifiers 82

source code modifications (continued)
fprintf and fscanf strings 83

SPIE runtime option
Language Environment

equivalent 41
running pre-OS/390 programs 42

SPIE with #pragma runopts
pre-OS/390 source code 17

SQL
requesting DB2 services 139

z/OS V1R5 XL C — z/OS V1R8
XL C 139

SQL compiler option
as of z/OS V1R10 XL C 139
as of z/OS V1R9 XL C 139

SQL coprocessor-based compilations
as of z/OS V1R10

namespace pollution 139
SRCMSG compiler option

as of z/OS V1R2 C/C++ 24, 60
STACK runtime option

as of z/OS V1R2 C/C++ 43
C/370 equivalent 41
parameters 43
STACK defaults 43

STAE runtime option
Language Environment

equivalent 41
running pre-OS/390 programs 42

STAE/SPIE with #pragma runopts
pre-OS/390 source code 17

Standard C++ compliance 100
array new with user-defined global

new operator
pre-OS/390 18

as of z/OS V1R2
access checking 126
access checking (C++ only) 126
CCN5193 exception 127
class type definitions 126
exception handling 126
exceptions 126
type definitions 126, 127

as of z/OS V1R2 C/C++
syntax error with array new 129

as of z/OS V1R2 C++
ambiguous overloads 127
effect on friend declarations 121

as of z/OS V1R7 XL C++ 80
as of z/OS V1R9

CCN5413 exception 126
class access checking 126

as of z/OS V1R9 XL C++ 80
effect on exception handling 122
implicit integer types

as of z/OS V1R2 C++ 120
scoping for-loop initializer

declarations
as of z/OS V1R2 C++ 120

statically initialized objects,
destruction of 120

user-defined conversions 128
Standard C++ compliance and friend

declarations in class member lists
as of z/OS V1R2 C++ 121

164 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Standard C++ I/O Stream Library
and UNIX System Laboratories

Complex Mathematics Library 80
standard math functions

as of z/OS V1R2 C++
ambiguous overloads 127

standard stream support
under CICS 134

static code 44
statically initialized objects, destruction

of 120
STATICINLINE compiler option

default as of z/OS V1R2 C/C++ 67
stderr 41

output handling under CICS 135
strerror() 40
symbolic names

resolution as of V1R9 89
SYSERR ddname

pre-OS/390 modules 41
SYSLIB compiler option

alternative as of z/OS V1R2
C/C++ 24

as of z/OS V1R2 C/C++
alternative 60

SYSMSGS ddname 40
SYSPATH compiler option

alternative as of z/OS V1R2
C/C++ 24

as of z/OS V1R2 C/C++
alternative 60

SYSPRINT ddname
pre-OS/390 modules 41

system header files
type declarations

as of z/OS V1R7 XL C++ 92
System Object Model

as of OS/390 V2R10 C/C++ 60
no longer supported 60

System Object Model (SOM)
as of OS/390 V2R10

removal of SOM support 75
System Programming C (SPC) facility

applications built with
EDCXSTRX 20

CEEEV003 20
EDCXV 20
source changes 20

SYSTERM ddname
pre-OS/390 modules 41

T
TARGET compiler option

and binder features 102
as of z/OS V1R6 C/C++ 97
as of z/OS V1R7 XL C++

C99 standard macros 83
as of z/OS V1R8 XL C/C++ 102
as of z/OS V2R2 XL C/C++ 67
earliest release that can be targeted

as of z/OS V1R13 XL C/C++ 95
targeting an earlier release

as of z/OS V1R13 XL C/C++ 95
as of z/OS V1R8 XL C/C++ 102

technical support xvi

TEMPLATEDEPTH compiler option
as of z/OS V1R13 XL C/C++ 96

templates
as of z/OS V1R9 XL C++

name lookup exceptions 90
terminate__3stdFv binder error

message 101
TEST compiler option

as of z/OS V1R6 C/C++ 27, 67
PATH suboption

as of z/OS V1R6 C/C++ 27
thread processing

as of z/OS V1R8 XL C/C++
processor release 80

processor release
as of z/OS V1R8 107

time zone issues 45
time.h header file

as of z/OS V1R9
localtime() function 107

TRAP runtime option
C/370 equivalent 41
running pre-OS/390 programs 42

TSO localedef utility interface
as of z/OS V1R6 109

TUNE compiler option
as of z/OS V2R2 XL C/C++

default 67
twobyte packed data alignment

as of z/OS V1R2 XL C++
unexpected C++ output 84

type definitions
as of z/OS V1R2

avoiding errors 126
typographical conventions x

U
ulimit command

as of z/OS V1R8 XL C/C++
MEMLIMIT system parameter 63,

99
unexpected results

as of z/OS V1R9 XL C++
impact of DFP size modifiers on

fprintf/fscanf results 106
ungetc()

effect upon behavior of fflush() 51
effect upon behavior of fgetpos() 51
effect upon behavior of fseek() 51

unhandled conditions
changes from C/370 V2 46

Unicode character translation
and #pragma comment strings

as of z/OS V1R10 XL C/C++ 61
UNIX System Laboratories

and Standard C++ I/O Stream
libraries 75

UNIX System Laboratories Complex
Mathematics Library

and Standard C++ I/O Stream
Library 80

earlier z/OS C/C++ source code 79
OS/390 source code 57, 75
pre-OS/390 source code 17

UNIX System Laboratories I/O Stream
Library

earlier z/OS C/C++ source code 79
OS/390 source code 57, 75
pre-OS/390 source code 17

UNIX System Services files, support
of 31

unrolling loops
as of z/OS V1R7 XL C/C++ 84

USEPCH compiler option
as of z/OS V1R2 C/C++ 60

user exits
as of z/OS V1R5

CEEBDATX 40
CEEBDATX 31
CEEBXITA library module 31
CEECDATX 133
IBMBXITA library module 31

user interface
ISPF 145
TSO/E 145

user name spaces
pre-OS/390 modules 34

user-defined conversions
avoiding exceptions 128

USERLIB compiler option
alternative as of z/OS V1R2

C/C++ 24
as of z/OS V1R2 C/C++

alternative 60
USERPATH compiler option

alternative as of z/OS V1R2
C/C++ 24

as of z/OS V1R2 C/C++
alternative 60

using directive
as of z/OS V1R10 XL C++ 119

V
variable mode

as of z/OS V1R9
C99 compliance 109

variables
as of z/OS V1R7 XL C/C++

binding OS/390 modules 71
reentrant 71

very large applications
as of z/OS V1R9 XL C/C++

IPA link step 68
macro redefinition 68

IPA Link step
as of z/OS V1R8 XL C 27, 99

virtual functions
declaring and calling

as of z/OS V1R6 C/C++ 84

W
WSIZEOF compiler option

pre-OS/390 source code 18

X
XL C DB2 coprocessor 139

Index 165

XL C/C++ compiler invocations
as of z/OS V1R6 C/C++ 96

xlc configuration file
as of z/OS V1R7 XL C/C++

customizing 91
xlc invocation

as of z/OS V1R7 XL C/C++
resolution of conflicts between

options and pragmas 91
xlc utility

and TEMPINC 96
as of z/OS V1R10

return-code processing 97
as of z/OS V1R7 XL C/C++ 97
source code changes 97
xlc command 96
xlC command 96
xlc++ command 96

XPLINK compiler option
as of z/OS V1R6 C/C++ 96

XPLINK runtime option
C/370 equivalent 41

Z
z/OS Basic Skills information center xvi
z/OS UNIX System Services

as of z/OS V1R8 XL C/C++
ulimit command 63, 99

z/OS V1R10
AMODE 64 applications 105
diagnostic changes

potential linkage issues 88
HEAPPOOLS runtime option 105
listings show compiler substitution

variables 88
namespace pollution errors 139
PTF UK31348 88
requesting DB2 services 139
return-code processing

options 97
SQL coprocessor-based

compilations 139
macro definition check,

performing 140
macro undefinition and

redefinition 140
xlc utility

return-code processing 97
z/OS V1R10 XL C/C++

#pragma comment and ASCII 61
ASCII users 61

z/OS V1R10 XL C++
name lookups 119
using directive 119

z/OS V1R11
_POSIX_C_SOURCE macro 100
C++11 126
corrections in escape sequence

encoding 88
extendedfriend 124
feature testing 100
friend declaration 124
header files 100
LANGLVL(EXTENDED0X) compiler

option 94

z/OS V1R11 (continued)
LANGLVL(EXTERNTEMPLATE)

compiler option 125
M compiler option 95
macro redefinitions 125
WARN0X compiler option 126

z/OS V1R12
LANGLVL(AUTOTYPEDEDUCTION)

compiler option 123
LANGLVL(C99LONGLONG) compiler

option 123
LANGLVL(C99PREPROCESSOR)

compiler option 123
LANGLVL(DECLTYPE) compiler

option 124
LANGLVL(DELEGATINGCTORS)

compiler option 124
LANGLVL(EXTENDEDINTEGERSAFE)

compiler option 125
LANGLVL(INLINENAMESPACE)

compiler option 125
LANGLVL(STATIC_ASSERT) compiler

option 126
LANGLVL(VARIADICTEMPLATES)

compiler option 126
RESTRICT 95
SEVERITY 95

z/OS V1R13
CHECKOUT compiler option 91
earliest release that can be

targeted 95
FLAG compiler option 93
GENASM compiler option 93
TARGET compiler option 95

z/OS V1R13 XL C/C++
ARGPARSE compiler option 61
DSAUSER compiler option 92
TEMPLATEDEPTH compiler

option 96
z/OS V1R2

#pragma enum 62
#pragma variable 67
ambiguous overloads 127
ANSI-aliasing rule 62
as of z/OS V1R2 C/C++

HALTONMSG compiler
option 62

batch processing
alternative 28
SYSLIB concatenation 28

C support 25
C++ exception handling 122
CC EXEC invocation changes 31
CHECKOUT(CAST) compiler

option 62
compiler options, no longer

supported 60
cv-qualification 122
DECK compiler option 23
destruction of statically initialized

objects before and after ISO/IEC
14882:2003(E) compliance 120

DIGRAPH compiler option
default 62

enumeration types
controlling size of 24

z/OS V1R2 (continued)
enumeration types (continued)

enumeration types, controlling size
of 62

ENUMSIZE() compiler option 62
friend declarations in class member

lists 121
friend declarations, visibility of 121
HWOPTS compiler option 24
implicit integer types and Standard

C++ compliance 120
include files, finding 24
INFO compiler option 25
INLINE compiler option 25

defaults 62
ISO standard C++ compliance 115
LANGLVL(COMPAT) compiler

option 24
LANGLVL(OLDMATH) compiler

option 127
library file searches 28
OMVS compiler option 24
pack(2) 84
pointer casting 62
ROSTRING compiler option 66, 67
scoping for loops 120
SRCMSG compiler option 24
STACK runtime option 43
Standard C++ compliance 122

C++ class access errors 126
STATICINLINE compiler option 67
syntax error with array new 129
SYSLIB compiler option 24
SYSLIB DD cards to remove 28
twobyte packed data alignment 84
unexpected C++ output 84
USERLIB compiler option 24

z/OS V1R3
#pragma map 32
C++ class names 32
external variable names 32
name mangling 32

z/OS V1R5
_EDC_PUTENV_COPY environment

variable 82
abnormal termination exit routine 40
batch processing 40
CEEBDATX 40
changes to putenv() 108
compiling OS/390 applications 68
destruction of statically initialized

objects before and after ISO/IEC
14882:2003(E) compliance 120

JCL procedures 68
Language Environment

customization 100
locale name 66
OPTIMIZE compiler option 66
POSIX compliance 82, 108
putenv() function 82
requesting DB2 services 139

z/OS V1R5 C/C++, earlier than
JCL procedures

Language Environment
customization 100

166 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

z/OS V1R6
_DEBUG_FORMAT environment

variable 74, 97, 103
@euro locale 109
@preeuro locale 109
alignment incompatibilities

between object models 102
ARCHITECTURE level and overflow

processing 61
batch processing 109
binding OS/390 modules 74
C support 25, 62
c89 utility 74, 97, 103
c89 utility and _DEBUG_FORMAT

environment variable 59
CHECKOUT compiler option 62
COMPAT compiler option 97
data types 65
declaring and calling virtual

functions 84
dynamic binding 84
EEC default currency 109
INFO compiler option 25, 62
interlanguage calls (ILC)

with #pragma pack(2) 102
ISO standard C++ compliance

determining level supported by
compiler 115

Language Environment
customization 109

LC_MONETARY information 109
listings 74
LOCALDEF utilities 109
long long 65
LP64 compiler option 96
MVS batch interface 109
object module incompatibilities

with #pragma pack(2) 102
pre-OS/390 modules and language

libraries 34
pre-OS/390 modules and user name

spaces 34
requesting DB2 services 139
setlocale() function 109
TARGET compiler option 97
TEST compiler option 27, 67
TSO localedef utility interface 109
xlc command 96
xlC command 96
xlc++ command 96
XPLINK compiler option 96

z/OS V1R7 62
_OPEN_SYS_SOCK_IPV6 macro 100
_OPEN_SYS_SOCK_IPV6 macro and

netinet/in.h
new definitions exposed 82

–qcpluscmt command option
when to override 97

#pragma unroll() 84
C99 support 83
CICS statement translation

options 133
CMDOPTS compiler option 91
comments, using 97
enumeration types

controlling size of 24
ENUMSIZE(SMALL) 92

z/OS V1R7 (continued)
feature testing 100
for loops 84
header files 100
LANGLVL compiler option 90

and macro redefinitions 93, 94
LANGLVL(ANSI) compiler option 64
LANGLVL(EXTENDED) compiler

option 64
LANGLVL(LONGLONG) compiler

option 83
LANGLVL(SAA) compiler option 64
LANGLVL(SAA2) compiler

option 64
Language Environment services 100
macro redefinition 90
macro redefinitions 64

LANGLVL compiler option 93, 94
numeric conversion functions 83
protected enumeration types in

system header files 92
reentrant variables with NORENT

binding OS/390 modules 71
JCL procedures 71

requesting DB2 services 139
resolution of conflicts between options

and pragmas 91
Standard C++ compliance 80
TARGET compiler option 83
under CICS 134
unrolling loops 84
xlc configuration file 91

z/OS V1R8
_PVERSION environment

variable 102
64-bit processing 93
64-bit virtual memory 63
binder errors

namespace pollution 31, 101
c89 utility

binder, invoking 71
c89 utility and COMPAT binder

option 102
errors binding earlier z/OS C/C++

programs
namespace pollution 101

errors binding pre-OS/390 programs
namespace pollution 31

GONUMBER compiler option 93
internal timing algorithm 107
IPA compiler option 99
IPA link step 99
IPA(LINK)

64-bit memory 99
MEMLIMIT default value 99

IPA(LINK) compiler option 63
link step defaults 63

JCL procedures 63
library functions 80
memory requirements 99
performance, improving

very large applications 99
processor release 80
requesting DB2 services 139
setting MEMLIMIT value 63
targeting an earlier release 102
thread processing 80

z/OS V1R9
__LOCALE__ macro 65
_ICONV_MODE environment variable

user-defined conversion tables 98
_XOPEN_SOURCE_EXTENDED

macro 100
<net/if.h> header file 100
array index definitions 89
as of z/OS V1R9 XL C/C++

default region size 98
batch processing and name mangling

ILP32 compiler option 99
C99 support 109
CICS processing

binary converter tables 136
HFS 136
iconv() changes and

CEECCSD.COPY and
CEECCSDX.COPY files 136

Load Module Analyzer
(LMA) 136

Unicode converters 136
using AFP registers 136

Communications Server
information 81

default daylight saving time 107, 108
DFP

size modifiers 82, 106
diagnostic changes

potential linkage issues 88
error messages

name lookup exceptions 90
feature test macros and system header

files 81
feature testing 100
FLOAT(IEEE) compiler option 109
getnameinfo() function 81
IEEE 754 interface declarations 81
IEEE754 math functions 109
ILP32 compiler option

batch processing and name
mangling 99

initialization incompatibility with
C/370 modules 44

IPA compiler option 68
ISO standard C++ compliance 115
JCL procedures

assembly listings 90
user-defined conversion tables 98

Language Environment services 100
library functions 80
LOCALE compiler option 65

and macro redefinitions 94
locale name 65
macro redefinitions

LOCALE compiler option 94
PTF UK31348 88
pthread_yield() function 80
region size, default 68
requesting DB2 services 139
scope information 81
Standard C++ compliance 80
symbolic names 89
templates 90
variable mode 109

Index 167

z/OS V2R1
ARCHITECTURE level and SYSSTATE

ARCHLVL statement 61
C++11 compiler option 122
IPA compiler option 93
LANGLVL(C1XNORETURN) compiler

option 123
LANGLVL(CONSTEXPR) compiler

option 124
LANGLVL(DEFAULTANDDELETE)

compiler option 124
LANGLVL(EXPLICITCONVERSIONOPERATORS)

compiler option 124
LANGLVL(EXTC1X) compiler

option 93
LANGLVL(REFERENCECOLLAPSING)

compiler option 125
LANGLVL(RIGHTANGLEBRACKET)

compiler option 125
LANGLVL(RVALUEREFERENCES)

compiler option 126
LANGLVL(SCOPEDENUM) compiler

option 126
M compiler option 65

z/OS V2R2
ARCHITECTURE default 61
TARGET compiler option 67
TUNE default 67

zFS files, support of 68

168 z/OS V2R2 XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

����

Product Number: 5650-ZOS

Printed in USA

GC14-7306-02

	Contents
	About this document
	z/OS XL C/C++ on the World Wide Web
	Where to find more information
	Information updates on the web
	The z/OS Basic Skills Information Center

	Technical support
	How to send your comments to IBM
	If you have a technical problem

	Part 1. Introduction
	Chapter 1. New migration issues for z/OS V2R2 XL C/C++
	Chapter 2. New migration issues for z/OS XL C/C+ V2R1M1
	Chapter 3. Program migration checklists
	Before you start your migration
	When you are compiling code
	When you are binding program objects or load modules
	When you are running an application
	Tools that facilitate your migration
	The Edge Portfolio Analyzer

	Applicability of product information
	Version history of IBM C/C++ compilers and libraries

	Part 2. Migration of pre-OS/390 C/C++ applications to z/OS V2R2 XL C/C++
	Chapter 4. Source code compatibility issues with pre-OS/390 C/C++ programs
	Removal of IBM Open Class Library support
	Source code modifications necessitated by changes in runtime library
	The #pragma runopts directive

	Resource allocation and memory management issues
	The sizeof operator applied to a function return type
	A user-defined global new operator and array new

	Addressing incompatibilities
	C/370 V2 main program and main entry point
	Pointer incompatibilities

	Data type incompatibilities
	Assignment restrictions for packed structures and unions
	DSECT header files and packed structures

	Changes required by programs with interlanguage calls
	Explicit program mask manipulations
	Assembler source code changes in System Programming C (SPC) applications built with EDCXSTRX

	Internationalization incompatibilities
	Support of alternate code points

	Chapter 5. Compile-time issues with pre-OS/390 C/C++ programs
	Changes in compiler listings, messages, and return codes
	Macro redefinitions might result in severe errors

	Changes in compiler options
	Compiler options that are no longer supported
	DECK compiler option
	LANGLVL(COMPAT) compiler option
	OMVS compiler option
	SRCMSG compiler option
	SYSLIB, USERLIB, SYSPATH and USERPATH compiler options

	Compiler options that were introduced in OS/390 C/C++ or later
	ENUMSIZE compiler option

	Changes in compiler option functionality
	HALT compiler option
	HWOPTS compiler option
	INFO compiler option
	INLINE compiler option
	LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions
	LANGLVL(EXTENDED) compiler option and macro redefinitions
	LOCALE compiler option
	OPTIMIZE optimization level mapping
	SEARCH and LSEARCH compiler options
	SQL compiler option and SQL EXEC statements
	TEST compiler option

	Changes that affect compiler invocations
	IPA compiler option and very large applications
	Customized JCL and the CXX format
	CBCI and CBCXI procedures in JCL

	Changes that affect SYSLIB DD cards
	Change in SCLBH logical record length

	Chapter 6. Bind-time migration issues with pre-OS/390 C/C++ programs
	Library release level in use
	Binder invocation changes
	Impact of changes to CC EXEC invocation syntax

	Changes due to customizations of the runtime environment
	User-developed exit routines
	Abnormal termination exit routines and dump formats

	Incompatibilities in external references
	Requirements for relinking C/370 modules that invoke Debug Tool
	C/370 modules with interlanguage calls (ILC)
	Interlanguage calls between assembler and PL/I language modules
	Function calls between C and Fortran modules
	Function calls to and from COBOL modules
	Compatibility with earlier and later releases
	Impact of changes in packaging of language libraries
	Linkage editor control statements for modules that contain calls to COBOL routines
	Programs that require the C370 Common Library environment

	Chapter 7. Runtime migration issues with pre-OS/390 C/C++ applications
	Retention of pre-OS/390 runtime behavior
	Runtime library messages
	Return codes and messages
	Error conditions that cause runtime messages
	Prefixes of perror() and strerror() messages
	Language specification for messages
	User-developed exit routines

	Changes that affect customized JCL procedures
	Changes in data set names
	Arguments that contain a slash
	Differences in standard streams
	Dump generation

	Changes in runtime option specification
	Runtime options lists
	Obsolete runtime options
	Return codes for abnormal enclave terminations
	Abnormal terminations and the TRAP runtime option
	Default heap allocations
	HEAP parameter specification
	Default stack allocations
	STACK parameter specification
	XPLINK downward-growing stack and the THREADSTACK runtime option

	Runtime library compatibility issues with pre-OS/390 applications
	Changes to the putenv() function and POSIX compliance
	UCMAPS and UCS-2 and UTF-8 converters
	Common library initialization compatibility issues with C/370 modules
	Initialization schemes
	Special considerations: CEEBLIIA and IBMBLIIA

	Internationalization issues in POSIX and non-POSIX applications

	Hardware and OS exceptions
	Decimal overflow exceptions
	SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions
	Unexpected SIGFPE exceptions

	Resource allocation and memory management migration issues
	The realloc() function

	Chapter 8. Input and output operations compatibility
	Migration issues when opening pre-OS/390 files
	Migration issues when writing to pre-OS/390 files
	Changes in DBCS string behavior
	Changes in stdout and stderr file positioning
	Behavior changes when closing and reopening ASA files
	Changes in values returned by the fldata() function
	VSAM I/O changes
	Change in allocation of VSAM control blocks and I/O buffers

	Terminal I/O changes

	Part 3. Migration of OS/390 C/C++ applications to z/OS V2R2 XL C/C++
	Chapter 9. Source code compatibility issues with OS/390 programs
	Overflow processing and code modifications
	References to class libraries that are no longer shipped

	Chapter 10. Compile-time migration issues with OS/390 programs
	Changes in compiler listings and messages
	Debug format specification
	Language specification for compiler messages
	Optimization level mapping and listing content
	Macro redefinitions and error messages

	Changes in compiler options
	Compiler options that are no longer supported
	ARCHITECTURE compiler option
	ARCHITECTURE level and overflow processing
	ARCHITECTURE level and Metal C file-scope header SYSSTATE ARCHLVL statement

	ARGPARSE compiler option with Metal
	ASCII compiler option
	CHECKOUT(CAST) compiler option
	DIGRAPH compiler option
	ENUMSIZE compiler option
	INFO compiler option
	INLINE compiler option
	IPA(LINK) compiler option
	IPA Link step default changes
	The IPA(LINK) option and exploitation of 64-bit virtual memory
	IPA object module binary compatibility

	LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions
	LANGLVL(EXTENDED) compiler option and macro redefinitions
	LANGLVL(LONGLONG) compiler option
	LOCALE compiler option
	M compiler option
	OPTIMIZE compiler option
	NORENT compiler option
	ROSTRING compiler option
	ROCONST compiler option
	STATICINLINE compiler option
	SQL compiler option and SQL EXEC statements
	TARGET compiler option
	TEST compiler option
	TUNE compiler option

	Changes in IBM data set names
	Introduction of 1998 Standard C++ support
	Changes that affect performance and optimization
	Addition of the #pragma reachable and #pragma leaves directives

	Changes that affect customized JCL procedures
	Potential increase in memory requirements
	JCL CBCI and CBCXI procedures and the variable CLBPRFX
	Syntax to invoke the CC command

	Removal of Model Tool support

	Chapter 11. Bind-time migration issues with OS/390 C/C++ programs
	Reentrant variables when the compiler option is NORENT

	Chapter 12. Runtime migration issues with OS/390 C/C++ applications
	Retention of OS/390 runtime behavior
	Changes to the putenv() function and POSIX compliance

	Debug format and translation of the c89 -g flag option
	Language Environment customization issues
	Change in allocation of VSAM control blocks

	Chapter 13. Migration issues resulting from class library changes between OS/390 C/C++ applications and Standard C++ library
	Function calls to different libraries
	Removal of IBM Open Class Library support
	Removal of SOM support
	Removal of Database Access Class Library utility
	Migration of programs with calls to UNIX System Laboratories I/O Stream Library functions

	Part 4. Migration of earlier z/OS C/C++ applications to z/OS V2R2 XL C/C++
	Chapter 14. Source code compatibility issues with earlier z/OS C/C++ programs
	Function calls to different libraries
	References to class libraries that are no longer shipped
	Migration from UNIX System Laboratories I/O Stream Library to Standard C++ I/O Stream Library
	Standard C++ compliance compatibility issues
	Use of XL C/C++ library functions
	Timing of processor release by the pthread_yield() function
	New information returned by the getnameinfo() function
	Feature test macros and system header files
	Potential need to include _Ieee754.h
	New definitions exposed by use of the _OPEN_SYS_SOCK_IPV6 macro
	Required changes to fprintf and fscanf strings %D, %DD, and %H
	Changes to the putenv() function and POSIX compliance
	Required changes to fprintf and fscanf strings due to new specifiers for vector types

	C99 support of long long data type
	Use of pragmas
	Application of #pragma unroll() as of z/OS V1R7 XL C/C++
	Unexpected C++ output with #pragma pack(2)

	Virtual function declaration and use

	Chapter 15. Compile-time migration issues with earlier z/OS C/C++ programs
	Changes in compiler listings, messages, and return codes
	Appearance of compiler substitution variables
	Corrections in escape sequence encoding
	Function offsets in source listing
	Diagnostic refinement in identification of linkage issues (C++ only)
	References to UNIX System Services file names
	Non-compliant array index raises an exception
	Unexpected name lookup error messages with template use
	Width of mnemonic in assembly listings
	Macro redefinitions and error messages

	Changes in compiler option functionality
	Option behavior change when processing multiple suboptions
	CHECKOUT compiler option
	CMDOPTS compiler option and conflict resolution
	DFP compiler option and earlier floating-point applications
	DSAUSER compiler option
	ENUMSIZE(SMALL) and protected enumeration types in system header files
	FLAG compiler option
	FLOAT(AFP) suboptions for applications that access CICS data
	GENASM compiler option
	GONUMBER compiler option and LP64 support
	IPA compiler option
	LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions
	LANGLVL(EXTC1X) compiler option
	LANGLVL(EXTENDED) compiler option and macro redefinitions
	LANGLVL(EXTENDED0X) compiler option
	LOCALE compiler option
	M compiler option
	RESTRICT option
	SEVERITY option
	SQL compiler option and SQL EXEC statements
	TARGET compiler option
	TEMPLATEDEPTH compiler option

	Changes that affect compiler invocations
	Changes that affect use of the c89 command
	Debug format specification

	Changes that affect use of the xlc utility
	Exposure of build problems and xlc utility
	When C++ style comments are the default

	Changes that affect JCL procedures
	User-defined conversion tables and iconv() functions
	ILP32 compiler option and name mangling
	IPA(LINK) compiler option and very large applications
	IPA(LINK) compiler option and exploitation of 64-bit virtual memory

	JCL that runs pre-z/OS V1R5 C/C++ programs
	Compiler options that manage Standard C++ compliance
	Impact of recompiling applications that include <net/if.h> with the _XOPEN_SOURCE_EXTENDED feature test macro
	Impact of recompiling applications that include the pselect() interface
	Impact of recompiling with the _OPEN_SYS_SOCK_IPV6 macro
	Impact of recompiling code that relies on math.h to include IEEE 754 interfaces

	Chapter 16. Bind-time migration issues with earlier z/OS C/C++ programs
	Unexpected "missing symbol" error (C++ only)
	Program modules from an earlier release
	Namespace pollution binder errors
	c89 COMPAT binder option default and programs from an earlier release

	Alignment incompatibilities between object models
	Alignment incompatibilities between XL C and XL C++ output with #pragma pack(2)

	Debug format and c89 -g flag option translation
	argc argv parsing support for Metal C programs

	Chapter 17. Runtime migration issues with earlier z/OS C/C++ applications
	Earlier AMODE 64 applications
	HEAPPOOLS runtime option no longer ignored in all AMODE 64 applications

	Customized runtime libraries
	Failure of authentication process
	Retention of previous runtime behavior
	Unexpected output from fprintf() or fscanf()
	IEEE754 math functions
	Internal timing algorithm specification
	Daylight saving time definition
	Changes to the putenv() function and POSIX compliance

	Internationalization issues
	Default daylight saving time change
	EEC default currency update
	Movement of LOCALDEF utilities to new data sets

	Changes in math library functions
	Changes in floating-point support
	Hexadecimal floating-point notation
	Floating-point special values

	Changes in allocation of VSAM control blocks
	Changes to st_mode attribute of AF_UNIX socket files
	Changes to strfmon() output
	Changes to structure t_opthdr in xti.h
	Changes to getting group or user database entry
	Removal of conversion table source code

	Part 5. ISO Standard C++ compliance migration issues
	Chapter 18. Language level and your Standard C++ compliance objectives
	Chapter 19. Changes that affect Standard C++ compliance of language features
	Unqualified name lookups and the using directive
	Order of destruction for statically initialized objects
	Implicit integer type declarations
	Scope of for-loop initializer declarations
	Visibility of friend declarations
	Migration of friend declarations in class member lists
	cv-qualifications when the thrown and caught types are the same
	Compiler options that are introduced in C++11 standard
	LANGLVL(AUTOTYPEDEDUCTION) compiler option (C++11)
	LANGLVL(C1XNORETURN) compiler option (C++11)
	LANGLVL(C99LONGLONG) compiler option (C++11)
	LANGLVL(C99PREPROCESSOR) compiler option (C++11)
	LANGLVL(CONSTEXPR) compiler option (C++11)
	LANGLVL(DECLTYPE) compiler option (C++11)
	LANGLVL(DEFAULTANDDELETE) compiler option (C++11)
	LANGLVL(DELEGATINGCTORS) compiler option (C++11)
	LANGLVL(EXPLICITCONVERSIONOPERATORS) compiler option (C++11)
	LANGLVL(EXTENDEDFRIEND) compiler option (C++11)
	LANGLVL(EXTENDEDINTEGERSAFE) compiler option (C++11)
	LANGLVL(EXTERNTEMPLATE) compiler option (C++11)
	LANGLVL(INLINENAMESPACE) compiler option (C++11)
	LANGLVL(REFERENCECOLLAPSING) compiler option (C++11)
	LANGLVL(RIGHTANGLEBRACKET) compiler option (C++11)
	LANGLVL(RVALUEREFERENCES) compiler option (C++11)
	LANGLVL(SCOPEDENUM) compiler option (C++11)
	LANGLVL(STATIC_ASSERT) compiler option (C++11)
	LANGLVL(VARIADICTEMPLATES) compiler option (C++11)
	WARN0X compiler option (C++11)

	Errors due to changes in compiler behavior
	C++ class access errors
	CCN5413 exception
	CCN5193 exception

	Exceptions caused by ambiguous overloads
	Exceptions caused by user-defined conversions
	Issues caused by the use of incomplete types in exception-specifications
	Syntax errors with array new

	Part 6. Migration issues for C/C++ applications that use other IBM products
	Chapter 20. Migration issues with earlier C/C++ applications that run CICS statements
	Migration of CICS statements from pre-OS/390 C/C++ applications
	CICS statement translation options
	HEAP option used with the interface to CICS
	User-developed exit routines
	Multiple libraries under CICS
	CICS abend codes and messages
	Default option for ABTERMENC changed to ABEND

	CICS reason codes
	Standard stream support under CICS
	Changes in stderr output under CICS
	Transient data queue names under CICS

	Migration of CICS statements from earlier XL C/C++ applications
	CICS TS V4.1 with "Extended MVS Linkage Convention"
	Customized CEECCSD.COPY and CEECCSDX.COPY files and iconv() changes
	Renaming direct converters
	Renaming indirect binary converter tables
	Renaming HFS indirect binary converter tables

	Chapter 21. Migration issues with earlier C/C++ applications that use DB2
	Namespace violations and SQL coprocessor-based compilations
	Example: Performing a macro definition check
	Example: Explicitly undefining and redefining a macro

	Potential need to specify DBRMLIB with the SQL option

	Part 7. Appendixes
	Appendix. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Standards
	Trademarks

	Bibliography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

